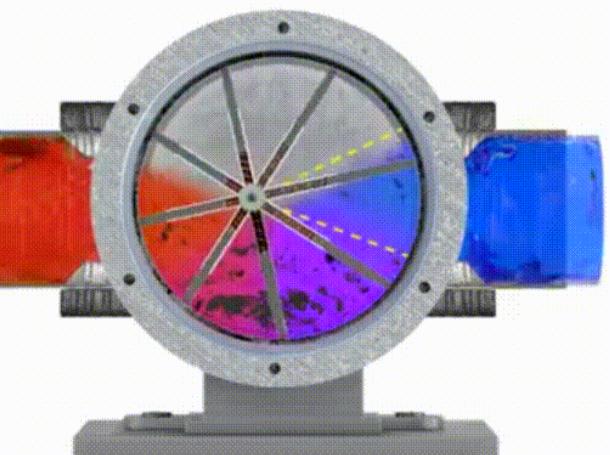


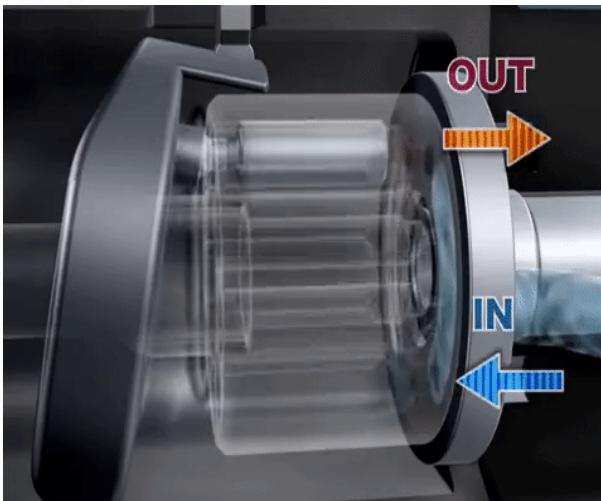
Hydraulic Fluid Principles and Packages

Functional Products Inc.

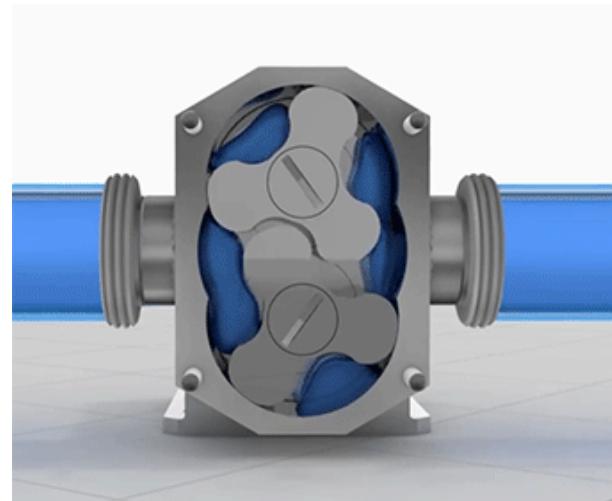
October 7th 2020



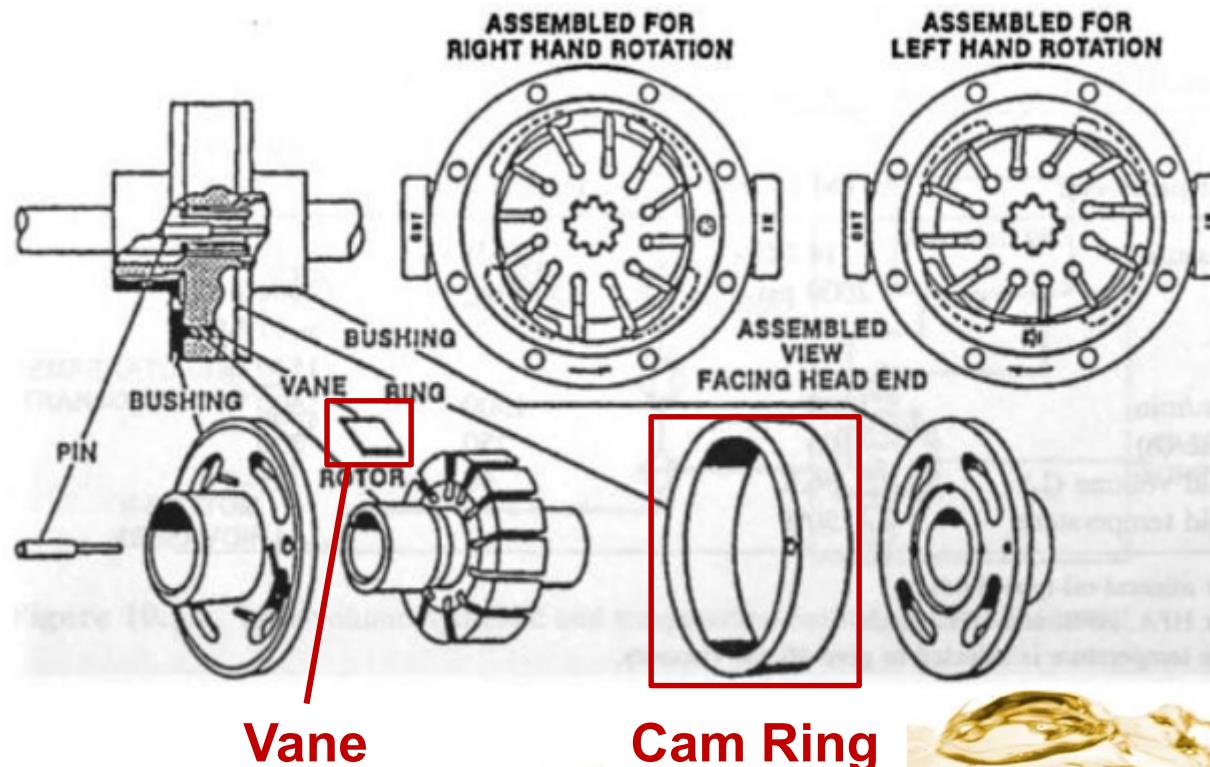
- Hydraulic fluid
 - Hydraulics
 - Formulation
 - Performance and Testing
 - Ecolabel / LuSC
 - Specifications / certifications
 - What Functional can and can't do in the HF area
- Air compressor



- Many designs and variations
 - All compress liquid and transmit the pressure as power across a 'circuit'


Vane Pump

Radial Piston Pump


Gear Pump

- Many sliding metal-on-metal elements
 - Vanes or pistons
- Rolling elements
 - Bearings and shafts
- Cavitation
 - Micro explosions of trapped air released under pressure
 - Causes surface pitting and ablation
- Hydraulic fluid must facilitate the transfer of pressure as power and ensure the mechanical systems generating/transmitting power survive

- ASTM D7043
 - Critical 'big test' for proving a HF formulation
 - Measures wear on vanes and cam ring of vane pump

- Viscosity
 - Most commonly ISO 46
 - Some ISO 32 / 68, less ISO 100
- Viscosity index
 - Monograde (VI ~100)
 - High VI (VI 140+)
 - Some 'very high' VI (VI 180+)

- High VI hydraulic fluids
 - Typically require a high VI base oil or VI improver polymer
 - Viscosity changes less with temperature
 - One grade can cover all seasons of hot and cold fluctuations
 - Especially important for mobile equipment
 - Less power fade as the fluids warms up after start-up

- Functional HF packages
 - HF-580 – 2.5wt% versatile and robust metal-free package
 - Wide variety of compatible base fluids
 - Cross-over into air compressor
 - HF-595 – 2.2wt% Ecolabel/LuSC certified for EAL hydraulics

- What do you need to prove the utility of an HF package or formulation?
 - Pre-screening bench tests - \$100-300/per
 - 4-ball wear (D4172, 40kg)
 - Demulsibility (D1401)
 - Defoaming (D892), Schedule I/II/III
 - Seal swell (D4289 / D6546 / etc.)
 - Oxidation stability (D2272), RPVOT
 - Shear stability (D5621 “sonic” or CEC L-45-99-A “20hr KRL”)
 - Pump testing - \$2000-5000/per
 - Vickers V104C (D2882)

- Three specs (DIN / ISO / ASTM) with various designation codes

DIN 51524

ISO 11158 (ASTM D6158)

BEST

HVLP: high viscosity, shear stability

HV: high viscosity index, shear stability

BETTER

HLP: anti-wear performance

HM: anti-wear performance

GOOD

HL: corrosion and oxidation performance

HL: corrosion and oxidation performance

HR: high VI

HH : no additives

- Each tier carries the additive and performance from the tier below
- In DIN, extra letters are tacked on with each tier
- In ISO/ASTM the letters are replaced (harder to remember)

- Functional Products supports European Ecolabel
 - LuSC list for environmentally acceptable lubricants
- European Ecolabel program defines required toxicity, biodegradability, renewability limits on ecofriendly lubes and grease
 - Shortlist for Vessel General Permit (all maritime lubricants)
 - Minimum performance specifications for each category
 - Ecolabel hydraulic fluid must conform to **ISO 15380**

- ISO 15380 – Environmentally acceptable hydraulic fluids
 - Four categories and requirements assigned by EAL base fluid
 - **HETG** – Triglyceride and vegetable oils
 - **HEES** – synthetic esters
 - **HEPG** – polyglycols
 - **HEPR** – polyalphaolefin and related

Test		ISO 22	ISO 32	ISO 46	ISO 68	ISO Method	ASTM Method
Density @ 15C	kg/m3	Report	Report	Report	Report	ISO 12185 ISO 3675	D4052 D1298
Color		Report	Report	Report	Report	ISO 2049	D1500
Appearance at 25C		Br & Cl	Br & Cl	Br & Cl	Br & Cl	Visual	Visual
Ash Content, max.	wt%	Report	Report	Report	Report	ISO 6245	D482
Flash Point, COC	C	>165	>175	>185	>195	ISO 2592	D92
Kinematic Viscosity							
	-20C mm2/s	report	report	report	report	ISO 3104	D445
	0C mm2/s	<300	<420	<780	<1400	ISO 3104	D445
	40C mm2/s	19.8 - 24.2	28.8 - 35.2	41.4 - 50.6	61.2 - 74.8	ISO 3104	D445
	100C mm2/s	>4.1	>5.0	>6.1	>7.8	ISO 3104	D445
Pour Point	C	report	report	report	report	ISO 3016	D97
Low temp. fluidity after 7 days		report	report	report	report	ASTM D2532	
Acid number, max.	mg KOH/g	report	report	report	report	ISO 6618 ISO 6619	D974 D664
Water content	mg/kg	1000	1000	1000	1000	ISO 12937 ISO 6296	D6304
Cleanliness level		report	report	report	report	ISO 4406 ISO 11500	
Copper Corrosion, 100C, 3hr		2	2	2	2	ISO 2160	D130
Rust Prevention A, 24hr		Pass	Pass	Pass	Pass	ISO 7120	D665A
Foam							
	Schedule Iml	150/0	150/0	150/0	150/0	ISO 6247	D892
	Schedule IIml	80/0	80/0	80/0	80/0		
	Schedule IIIml	150/0	150/0	150/0	150/0		
Air Release, 50C		<7	<7	<10	<10	ISO 9120	D3427
Water Separation (time to 3 mL emulsion, 54C) min		report	report	report	report	ISO 6614	D1401
Elastomer Compatibility after 1000hrs (pick 2)							
	NBR 1C	60	80	80	80	ISO 6072	
	HNBR C	60	80	80	80		
	FKM 2C	60	80	80	80		
	AUC	60	80	80	80		
Change in shore A hardness %		+/- 10	+/- 10	+/- 10	+/- 10		
Change in volume %		-3 to +10	-3 to +10	-3 to +10	-3 to +10		
Change in elongation %		<30	<30	<30	<30		
Change in tensile strength %		<30	<30	<30	<30		
Oxidation Stability (dry TOST)							
Time to reach TAN = 2 mg KOH/g, minhr		report	report	report	report	ISO 4263-3	D943
Baader Test, 95C, 72hr							
Increase in viscosity at 40C %		<20	<20	<20	<20	DIN 51554-3	
FZG A/8,3/90	stage	N/A	10+	10+	10+	ISO 14635-1	
Vane Pump, Procedure A							
	Ring loss mg	<120	<120	<120	<120	ISO 20763	D7043
	Vane loss mg	<30	<30	<30	<30		

\$9,000 and 12 gallons of sample per grade (all-in cost w/o support)

Functional can support testing

- HF packages are often suitable for use in many other multi-functional products including:
 - Air compressor oil
 - Spindle oil
 - Turbine oil
 - Bearing oil
 - Circulating fluids

- Compressed fluid applications – HF and air compressor
 - Air compress runs hotter, no cooling medium
- Base fluids:
 - Mineral oil
 - PAO
 - Polyol ester / diester
 - PAG
- Specialty air compressor:
 - Compressed gases other than air
 - Refrigeration
 - Food grade / H1
 - Marine
 - Automotive (turbo compressor)