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Professional Background:

Material scientist focused on using polymers to solve 
problems in lubrication; develops additives and 
formulates conventional and specialty lubes/greases

• PhD Polymer Science (U. of Akron)

• BS Chemistry, Polymer Focus (U. of Connecticut)

• 2018 NLGI Development Author Award

• Articles in NLGI Spokesman, LnG, TLT
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Outline
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“Do polymers affect the mechanical stability of grease?”

• Motivation

• Grease Polymer  Theory

• Experimental Design

• Interpretation of Results

• Key Points

“Yes, but…”
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Motivation
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Rezasoltani, A. & Khonsari, M. M. Lubricants  4, (2016).

•  Polymers will continue to play a role in emerging grease specs and applications
• HPM spec (water resistance, oil bleed), biobased grease, fill-for-life, EV market, etc.

• The ability to stay in grade and avoid consistency changes is critical to success
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Grease Polymers
• Grease polymers form interpenetrating networks with grease thickener

• < 1wt% has significant effects on tackiness, water resistance, oil bleed, and rheology
• Does using polymers for one purpose have consequences on mechanical stability?
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Grease Polymer Types

• Temperature Sensitive – long runs of ethylene or styrene form waxy linkages

• Hydrogen Bonding – interactions between polar Lewis acid (+) and base (-) sites

• Reactive – reaction between –OH or M+ with acid anhydrides
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Experimental Design

1. Screen a variety of greases with different structures against several different types of 
grease polymers to find positive or negative interactions

2. We assume an increase in consistency coincides with structuring b/w grease and polymer

• i.e. formation of an Interpenetrating Network (IPN)

3. We then proceed with roll stability only on the positive grease + polymer combinations to 
evaluate if consistency from polymer is shear stable

• We assume negative combos have already shown mechanical instability (60x worked)
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• Simple Lithium

• Lithium Complex

• Calcium Sulfonate

• Aluminum Complex

• Silica

• Bentonite Clay

The Greases
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“FIBROUS”

“GLOBULAR”

“PARTICLE”

Microscopy and structures based on Refs 3-13 in paper
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• Milled commercial greases minus polymer

• Base oil sampled from oil bleed

Grease Properties
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Thickener Cone Pen.

(D1403)

NLGI Grade

(D217)

Base Oil

(D445, D2270)

Dropping Point

(D2265)

Roll Stability

(D1831)

Simple Lithium 272 2 ISO 150 VI 98 391F / 199C +1.2%

Lithium Complex 264 2.5 600N VI 113 518F / 270C +36.1%

Calcium Sulfonate 242 3 ISO 100 VI 111 >752F / 400C +3.1%

Aluminum Complex 253 2.5 ISO 150 VI 108 542F / 283C +1.5%

Silica 309 1.5 600N VI 124 642F / 339C +2.3%

Clay (Bentonite) 350 0.5 ISO 460 VI 101 >752F / 400C +11.3%
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The Polymers

• We know:
• Certain grease thickeners favor specific types of grease polymers

• MW dependencies exist for parameters such as water resistance and tack

• Nine polymers selected:
• A low and a high MW example each from four categories:

• Temperature sensitive grease polymer

• Hydrogen bonding grease polymer

• Reactive grease polymer

• Tackifier

• Plus one dispersant PMA 
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Polymer Details

• Low MW grease polymers = 100,000 – 200,000 Mw

• High MW grease polymers = 300,000 – 600,000 Mw

• Low MW tackifier was olefin copolymer

• High MW tackifier was an ultrahigh MW PIB

• Dispersant PMA with short/long alkyl groups and amine functionality (0.1% N)
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Sample Prep

• Polymers added to pre-made greases from liquid concentrate to standardize the addition 
between different greases and expedite the preparation of 60 samples

1. Each polymer diluted to 8-10wt% in 100N with mixing at 100-120°C for 24 hrs

2. Filtered then added at 5wt% to each base grease

3. Greases mixed at 80-100°C for 2 hours

4. Allowed to rest at room temperature for 24 hours before testing

• Control samples prepared by adding 5wt% of 100N

• Did not mill post-addition
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Data Handling

• Our goal is to cast a wide net and establish a high level study to look at trends

• Many data points: 6 greases x (9 polymers + 2 controls) x multiple measurements…

• Two simplifications to data analysis:

1. Changes to consistency with polymer are noted only if grade changes by 0.5 or more 

• Change from 280 to 270 is still NLGI #2

2. Changes to roll stability are significant only if larger than method error

• 3.8% error based on ¼ cone and average consistency tested
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Findings – Consistency

54 greases; control = grease w/ 5% oil

• ~ 52% of cases show grade increase

• ~ 39% show no grade change

• ~ 9% show grade loss
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NLGI Grade Change In Polymer-Modified Grease
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Consistency Gain

• Lithium and lithium complex greases with most polymers

• Calcium sulfonate with lube oil tackifiers

• Clay with hydrogen bonding or reactive polymers
• Polymer likely associating with surface sites and coupling clay to base oil

• We see less effect on the more surface inactive silica grease
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Base Oil

Base Oil Base Oil

Base Oil
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Consistency Loss

• Only observed in calcium sulfonate and aluminum complex
• Significant in stearate-based AlX w/ waxy polymers

• ‘Globular’ grease network of stearate-stearate interactions
• Waxy polymers can disrupt wax networks (aka PPDs)
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Consistency Unaffected

• Silica grease
• Fumed silica, lower surface functionality than clay, more inert

• Greases with dispersant PMA
• Polar sites in low concentration, protected by long alkyl groups

• Low interaction w/ thickener

• Greases with low MW H-bonding polymer
• Least effective grease polymer, too poorly soluble in paraffinic to perform correctly
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Findings – Roll Stability

27 greases, control = base grease:

Only measured for greases with grade gain

• ~ 22.2% show more roll stability

• ~ 22.2% show less roll stability

• ~ 55.6% show no change within error
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Roll Stability Change In Polymer-Modified Grease
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Roll Stability Improves

• Almost exclusively in lithium complex grease
• Best stability from the non-polar high MW polymer

• Similar stability whether +0.5 or +1.0 grade
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Roll Stability Worsens
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• Most common in calcium sulfonate and AlX
• H-bonding and reactive polymers are antagonistic

• May be disrupting highly polar micelle core

• May be an artifact from not milling post-addition
• But did not happen consistently for same greases or polymers

+ Mechanical
Mixing
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Roll Stability Unaffected

• Most common in simple lithium and clay

• May still be considered a ‘win’ for grease polymers

• Thickener content reduced but net gain in grade from polymer
• Implies a considerable amount of consistency now from polymer but no loss in stability

• Let’s consider D1831 vs. other lubricant shear methods…
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Mechanical Shearing Methods

• Compare magnitude of conditions at work in D217 and D1831 versus lube shear methods

• Most grease polymers fall in MW range of engine oil polymers (25-60 SSI by K-O)
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Method Nominal Speed Load or Pressure Temp Hours

ASTM D217

Worked Cone

0.133 m/s

(60 up-down 2.625” strokes/min)

Undefined 25°C 27.8

(100K)

ASTM D1831

Roll Stability

0.755 m/s

(3 35/64” dia. roller weight @ 160 rpm)

5 kg weighted roller 25°C 2

ASTM D6278

Kurt Orbahn

111 m/s

(170 mL/min, 0.18mm dia. nozzle)

2600 psi across 0.18mm dia. 35°C 0.5

ASTM D2603

Sonic Shear
6,000 – 20,000 oscillations/second

Ultrasonic cavitation

(100 – 500W)

40°C 0.67

CEC L-45-99-A

20 Hour KRL

4.15 m/s

(54.7mm race dia. @ 1450 rpm)

509.9 kg

(5000 N)

60°C 20
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Final Look at Shear

• Two olefin copolymers at 1wt% and 7wt% in 100N, sheared by D217 100K stroke

• ~90% less shear than D6278 K-O, the least aggressive lube shear method
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Conclusions

• Grease polymers can often provide increased consistency (yield) to a variety of greases

• Increased consistency from grease polymer is generally stable and does not shear

• Different thickeners responded differently to grease polymers

• Fibrous grease (Li and LiX) are compatible with a wide range of polymer chemistries

• Globular grease (CaSulf and AlX) are highly selective and can often lose grade

• Particle greases (Silica and Clay) are best with H-bonding and reactive polymers

24



© 2020 NLGI

Future Work

• Test hypotheses generated from high level analysis of consistency and shear data

• Microscopy on grease structures w/ and w/o polymer after shear?

• Evaluate greases that did not change in grade – are they more shear stable?

• Can we pick better polymers to improve roll stability?

• Wider range of initial roll stability for base grease – most were < 5% change to start

• Use ‘base grease + 5% oil’ as control for roll stability to probe if % thickener affects stability

• Mill greases post-addition

• 1/2 cone measurements on roll stability
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Improvements
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Thank you!
Erik Willett
ewillett@functionalproducts.com
330-963-3060

26

Thanks to:
Daniel Vargo, Functional Products – grease discussion
Pat Stockton, Clark Testing – advice on D1831
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