

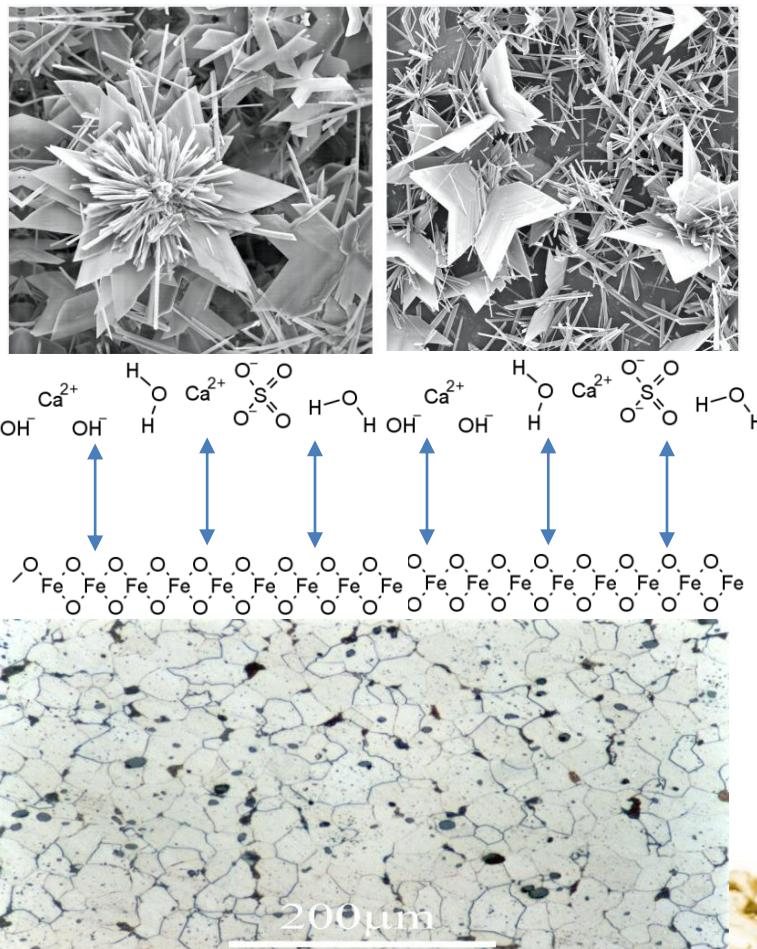
# **Concrete Mold Release**

January 2021



- Concrete is a crystallized conglomerate of aggregate and binder made using a thick water-based paste either to pour on site or made precast structures

| Component                   | Subcomponents                                                                                                                                                                                                                                                                  | Vol% Concrete |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Portland cement<br>(binder) | Ca <sub>3</sub> Al – 10%<br>Ca <sub>4</sub> Al <sub>2</sub> Fe <sub>2</sub> O <sub>10</sub> - 8%<br>Ca <sub>2</sub> SiO <sub>5</sub> - 20%<br>Ca <sub>3</sub> SiO <sub>4</sub> – 55%<br>Na <sub>2</sub> O + K <sub>2</sub> O – 2%<br>CaSO <sub>4</sub> ·2H <sub>2</sub> O – 5% | ~19%          |
| Aggregate                   | Sand / Limestone / Gravel                                                                                                                                                                                                                                                      | ~56%          |
| Water                       | Water                                                                                                                                                                                                                                                                          | ~25%          |


- Plus any admixtures like accelerators, corrosion inhibitors, polymers

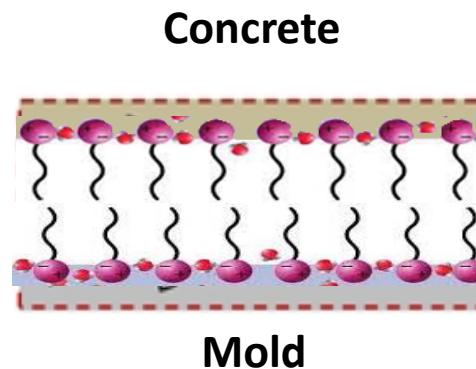
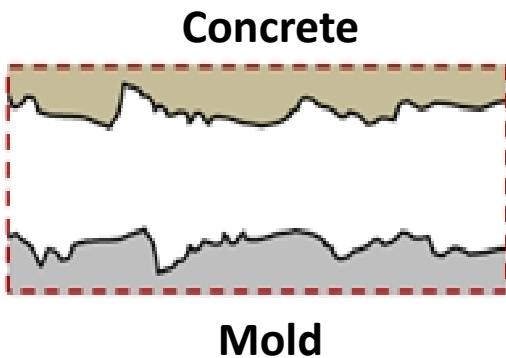
<https://www.engr.psu.edu/ce/courses/ce584/concrete/library/construction/curing/composition%20of%20cement.htm>

<http://matse1.matse.illinois.edu/concrete/prin.html>

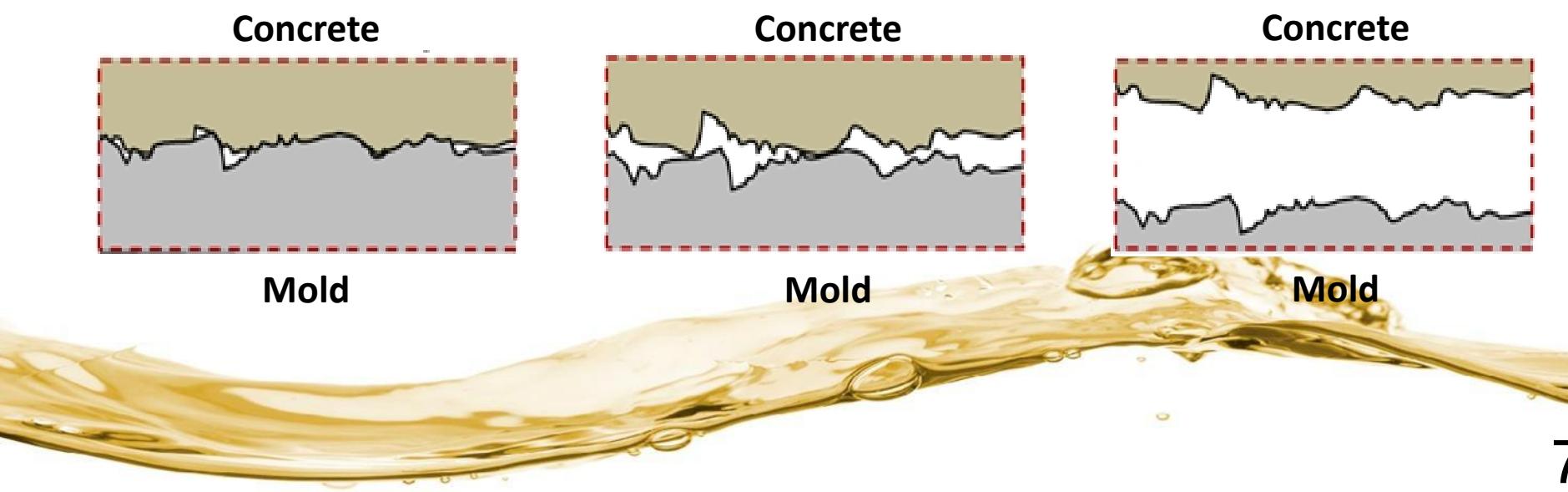
## Ca/Al/Fe silicates, sulfates, and hydrates (concrete)

## Carbon steel (walls of mold)





- Ca/Al/Fe/Si oxides and hydrates in the concrete can form strong ionic and hydrogen bonding with metal oxides on metal or cellulosics in wood
  - Adhesion, if only occasional, causes:
    - unwanted defects in the concrete piece
    - corrosion or pitting of the mold (reduced life, increased equip. costs)
    - and increased time to remove and clean the mold (longer cycle time)
- Typically not required in rubber-based molds (low surface energy hydrocarbon material with no polarity or hydrogen bonding) but required for wood or metal forms

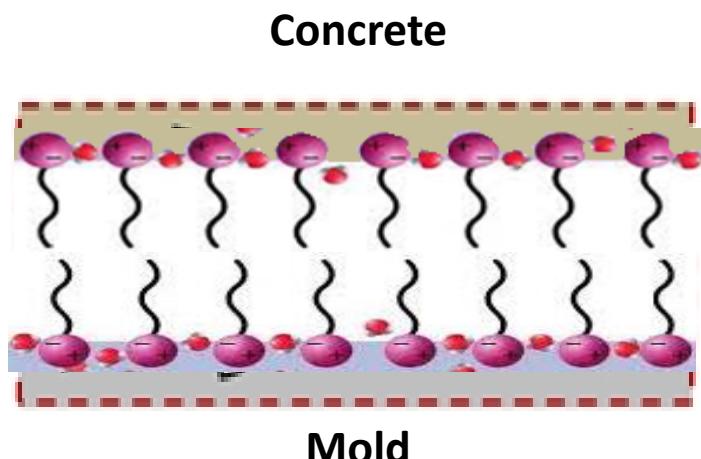



- FUNCTIONAL CMR-1001
  - Concrete mold release additive
    - Reactive type
  - Use 3wt% in most cases
  - Biobased but functions in both veg oil and mineral oils
    - Not designed for emulsions; if interested, use non-ionic emulsifiers



- Release agent is sprayed / painted / wiped onto the mold to prevent contact and bonding between the concrete and the mold surface
- Barrier vs. Reactive types of release agents



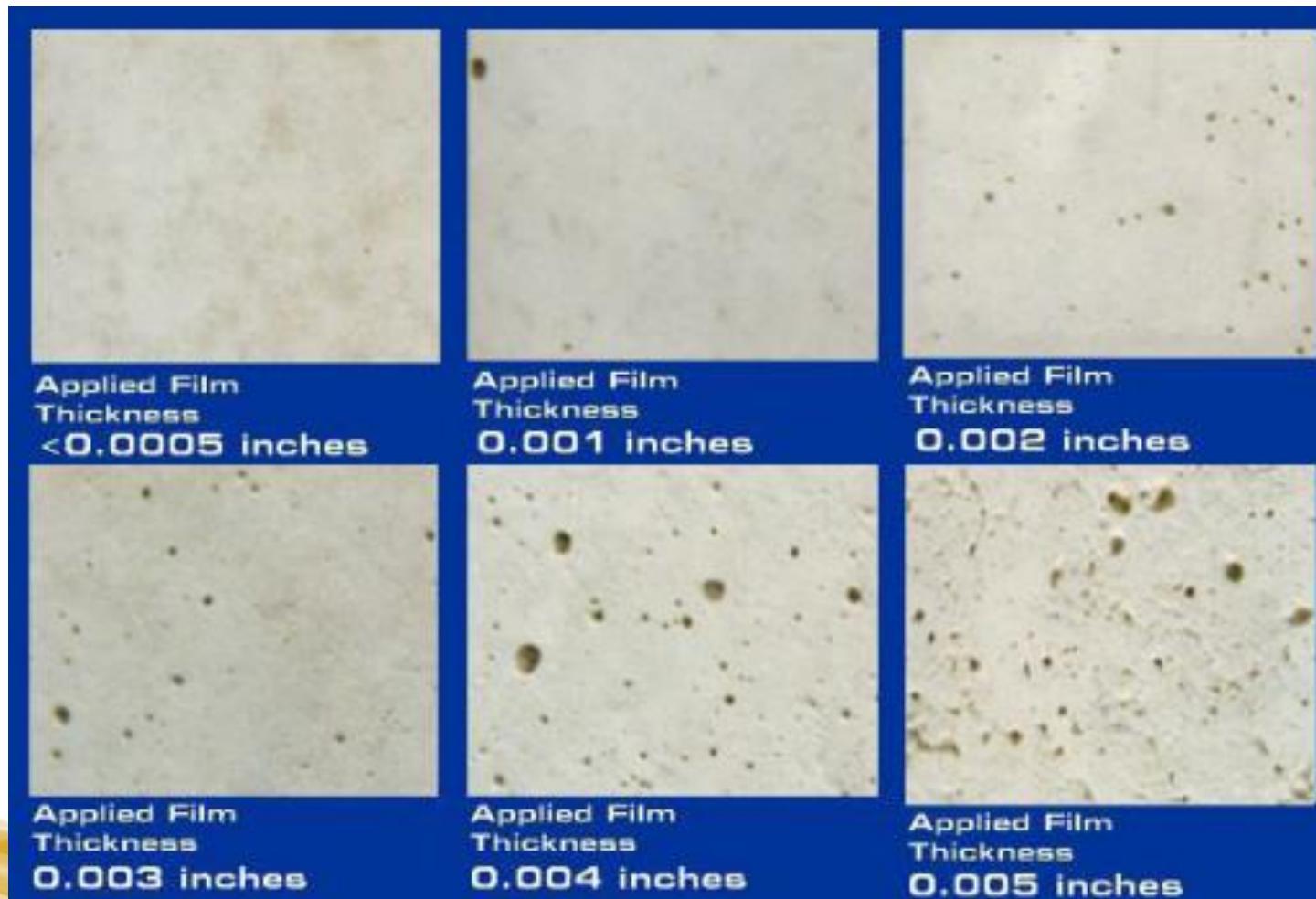

- Barrier mechanism uses a viscous, low surface tension fluid to coat between two high surface energy materials (concrete and mold)
  - “Film strength”
- Tend to be higher viscosity (ISO 46 paraffinic oil or vegetable oil)
- Lowest cost but tends to form surface defects
- Used for disposable or inert (rubber) molds



- Reactive mechanism uses acids or complexing agents to form a passivating soap at the surface of the concrete
  - “Soap”
- Tend to be lower viscosity (ISO 5 – 15)
- Most common now

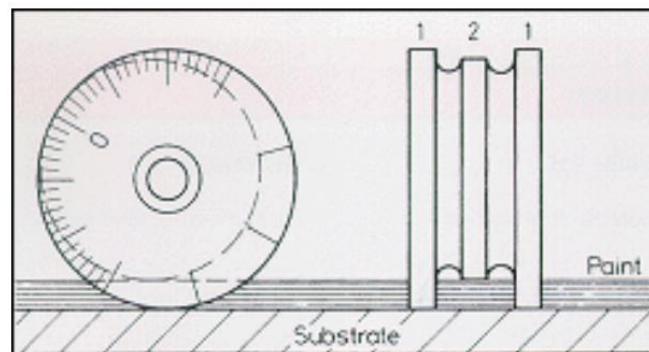
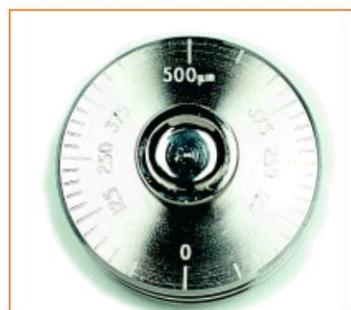
- **FUNCTIONAL CMR-1001**
- **FUNCTIONAL CMR-1001RO**




- With respect to...
  - Surface finish
    - Discoloration
    - Surface voids (bug holes)
    - Dusting concrete
  - Mold design
    - Material (metal, rubber, wood, fiberglass)
    - Complexity of shape and draft angles
    - Corrosion of metal components
  - Release agent
    - Pooling of agent
    - Sticking residue to mold
    - Cost
  - Environment
    - Volatility/flammability/inhalation and worker safety
    - Effects of overspray
    - Indoor/outdoor operations



- Surface voids / bug holes
  - Puddles or a layer of release agent applied too thickly traps air and causes the bubble to cure as a hole on the surface
- Dusting
  - Too much release agent causes the surface of the concrete to cure weakly and be prone to flaking off (forming dust)
  - Can also be due to concrete formulation
- Pinholes
  - Mold surface not cleaned properly between uses
- Oil stains
  - Too much release agent is used and remains on surface; discolors over time with light / heat / air

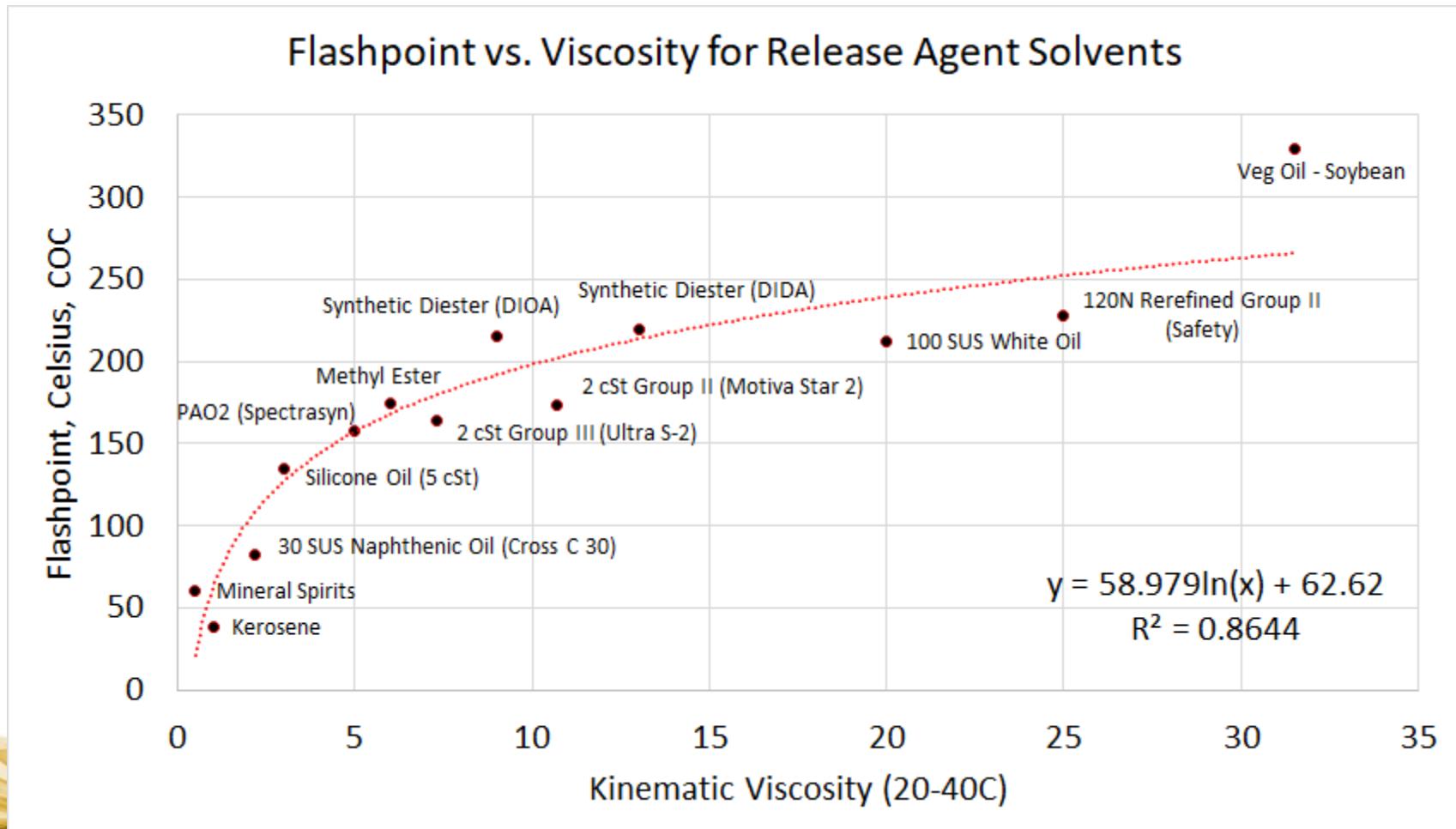

- Film thickness determines surface finish
  - Thicker films trap air and create voids during cure
  - **Film Thickness = Amount Applied + Viscosity + Temperature**



- Wet film wheel from Elcometer, ~\$300-400/per
  - 0 – 100 micron w/ 5 micron resolution

Elcometer 3230 Wet Film Wheels




- Optical - Pfund Thickness Gauge
  - 2 – 360 micron



Elcometer 3233 Pfund Thickness Gauge

[https://www.elcometerusa.com/Elcometer-3230-Wet-Film-Wheels-Range-0-100m-Metric-K0003230M003.html?gclid=Cj0KCQiAmL-ABhDFARIsAKywVadyUGUYTr0vIF0GKE-tWY5sO6Qdg4TZIsKVLTRCWBAJbR0-iZKX6B8aAk6eEALw\\_wcB](https://www.elcometerusa.com/Elcometer-3230-Wet-Film-Wheels-Range-0-100m-Metric-K0003230M003.html?gclid=Cj0KCQiAmL-ABhDFARIsAKywVadyUGUYTr0vIF0GKE-tWY5sO6Qdg4TZIsKVLTRCWBAJbR0-iZKX6B8aAk6eEALw_wcB)

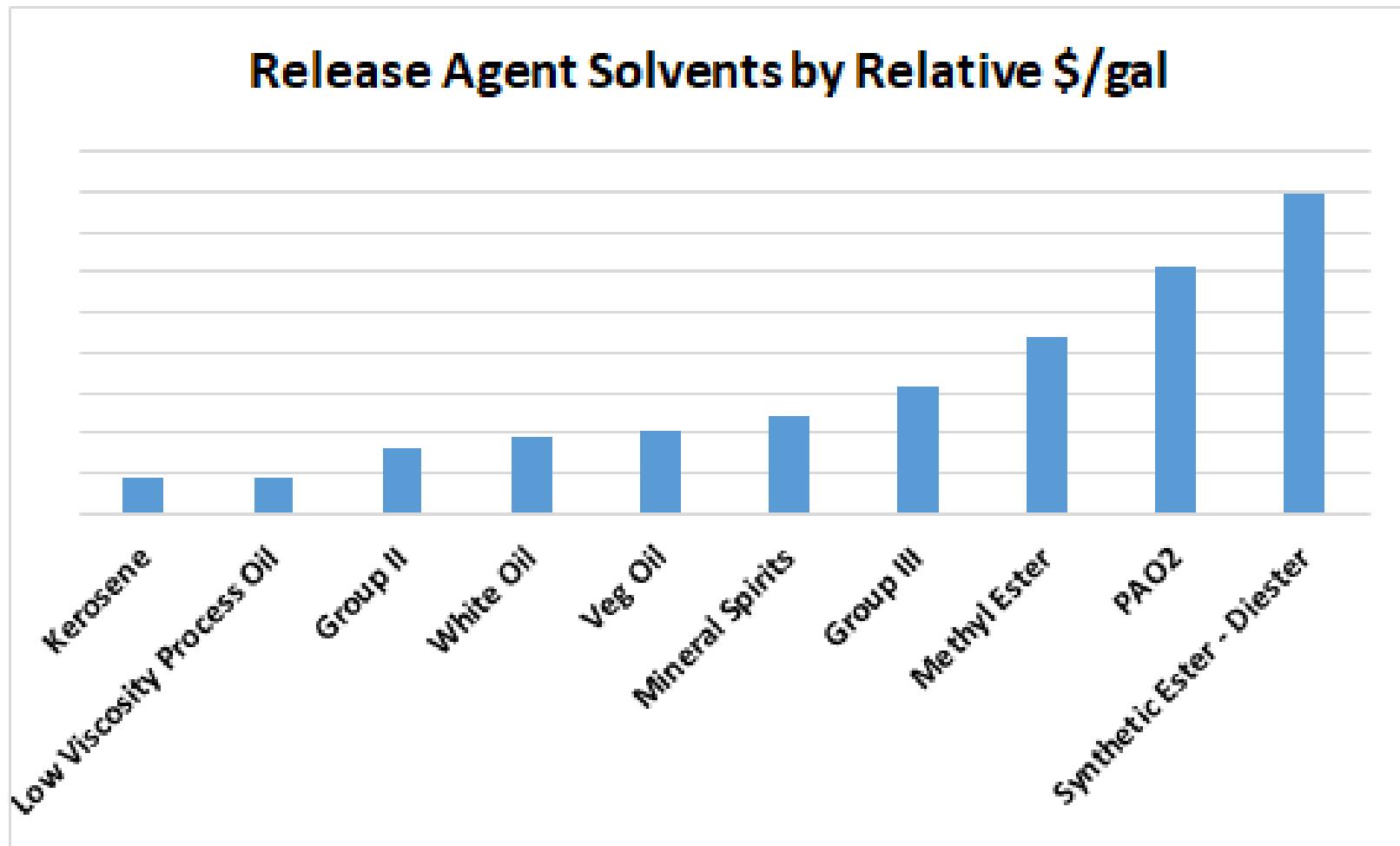
- Volatility (flashpoint) closely follows viscosity
  - Esters and highly refined alkanes (paraffins) increase flash
  - Aromatics and cycloalkanes (naphthenes) reduce flash



- 1 – Veg/ester emulsion; no aromatics, no hazards or labeling
- 2 – Straight veg/ester oil; no hazards or labeling
- 3 – Veg/ester + petroleum oil emulsion; no labeling
- 4 – Petroleum oil w/ <0.03% aromatics
  - Add H304: May be fatal if swallowed and enters airways
- 5 – Petroleum oil w/ <2% aromatics, 60-100C flash point
  - Seg 4 hazards + EUH066: Repeated exposure may cause skin dryness/cracking.
- 6 – Petroleum oil w/ <2% aromatics, 23-60C flash point
  - Seg 5 hazards + H226: Flammable liquid and vapour
    - And H335: May cause respiratory irritation
- 7 – Petroleum oil w/ >2% aromatics, 23-60C flash point
  - Seg 6 hazards + H411: Toxic to aquatic life with long-lasting effects



- Based on composition, viscosity/flashpoint, and % aromatics


| Segment                                  | Petroleum                                                                            | Biobased                                                        |
|------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| <b>1 – ester + water</b>                 |                                                                                      | Vegetable oil, methyl ester, synthetic ester, water, emulsifier |
| <b>2 – straight ester</b>                |                                                                                      | Vegetable oil, methyl ester, synthetic ester                    |
| <b>3 – ester + petroleum</b>             | White oil (< 100 SUS), Group III (2-4 cSt), PAO2                                     |                                                                 |
| <b>4 – petroleum, very low aromatics</b> | White oil (< 100 SUS), Group III (2-4 cSt), PAO2                                     |                                                                 |
| <b>5 – medium flash, low aromatics</b>   | Group II paraffinic; process or naphthenic oils ( $\leq$ 35 SUS); T3 mineral spirits |                                                                 |
| <b>6 – low flash, low aromatics</b>      | Isoparaffins; T1/T2 mineral spirits, odorless                                        |                                                                 |
| <b>7 – low flash, high aromatics</b>     | Kerosene                                                                             |                                                                 |

- Low viscosity, high safety fluids to build CMR fluids with:

| Formula by wt%               | Flashpoint,<br>C | KV<br>20 | KV<br>40 | KV<br>100 | %<br>Aromatics | Asp Tox<br>1 Haz? |
|------------------------------|------------------|----------|----------|-----------|----------------|-------------------|
| <b>Naphthenic 35 SUS</b>     | 94               | 3.7      | 2.8      | 1.2       | 0 – 20         | Y                 |
| <b>Methyl Ester</b>          | 130              | 10.2     | 4.6      | 1.7       | 0              | N                 |
| <b>PAO 2</b>                 | 158              | 12.8     | 6.7      | 2.0       | 0              | Y                 |
| <b>Diethyl Adipate</b>       | 215              | 17.9     | 9.4      | 2.8       | 0              | N                 |
| <b>Paraffinic/WO 65 SUS</b>  | 212              | 18.8     | 9.3      | 2.5       | 0.01 – 10      | Y                 |
| <b>Paraffinic/WO 120 SUS</b> | 228              | 61.1     | 24.8     | 4.8       | 0.01 – 10      | N                 |
| <b>Vegetable Oil</b>         | 330              | 67.3     | 33.0     | 8.1       | 0              | N                 |

- Petroleum oils and PAO with viscosity @ 40C of <20.5 cSt are rated with Aspiration Toxicity 1 hazard if present at ≥10wt% of the formula
- Use “naphthenic oils” rather than high aromatic “process oils”
  - Compare brands: Cross Corsol 35 (14% aromatic C) vs. Nynas NS 3 (6% aromatic C) vs. Calsol P904 (2% aromatic C)

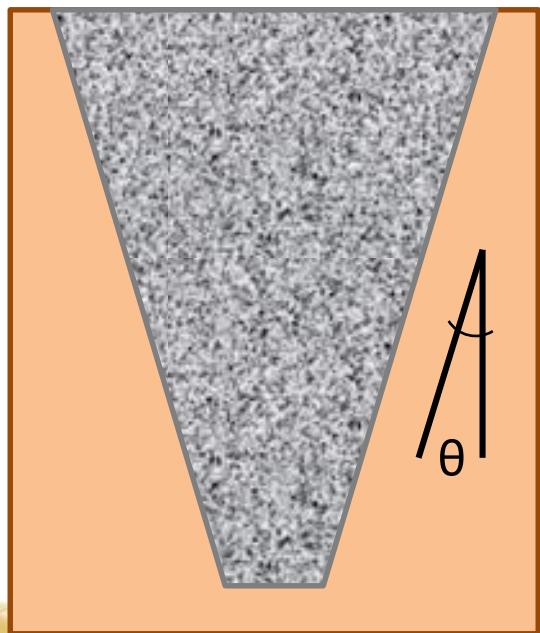
- Silicone oils at



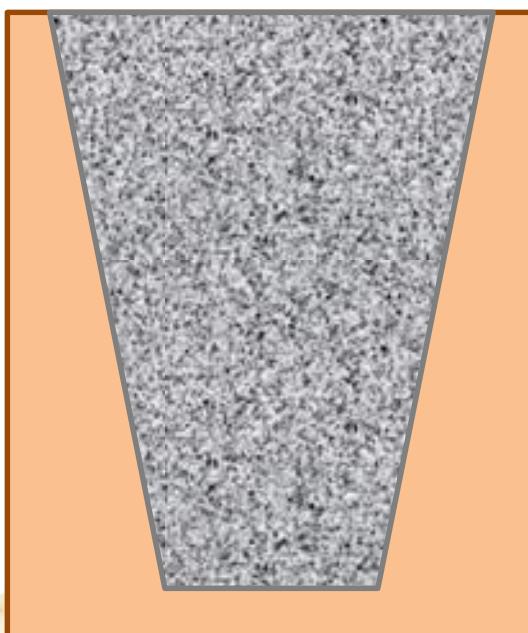
Silicone oils at 4x lb/gal vs. synthetic ester diester

[Historic kerosene pricing](#)

- Concrete mold release formulating can be as complex as you want it to be




| Formula by wt%               | All-Purpose                                                      | Severe Angle                                                             | Winterized                                                        | Complex Geometry                                                                                     |
|------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Base Fluid                   | 97%                                                              | 94%                                                                      | 96%                                                               | 93%                                                                                                  |
| <b>FUNCTIONAL CMR-1001</b>   | 3%                                                               | 6%                                                                       | 3%                                                                | 3%                                                                                                   |
| <b>FUNCTIONAL PD-590</b>     |                                                                  |                                                                          | 1%                                                                |                                                                                                      |
| <b>FUNCTIONAL V-584</b>      |                                                                  |                                                                          |                                                                   | 4%                                                                                                   |
| <b>FUNCTIONAL DF-500</b>     |                                                                  |                                                                          |                                                                   |                                                                                                      |
| <b>Merits</b>                | -Low color, low VOC, non-toxic and biodegradable formula         | -Extra strength release aid for molds with severe draft angles or length | -Improved cold temperature fluidity for outdoor operations        | -Anti-drip / anti-sag formulation for molds with complex shapes and vertical or upside-down surfaces |
| <b>wt% Biobased Content</b>  | >99%                                                             | >99%                                                                     | >99%                                                              | >99%                                                                                                 |
| <b>Pour Point (ASTM D97)</b> | -12C / 10F<br>(if using soy)<br>-24C / -11F<br>(if using canola) | -12C / 10F<br>(if using soy)<br>-24C / -11F<br>(if using canola)         | -27C / -17F<br>(if using soy)<br>-36C / -33F<br>(if using canola) | -12C / 10F<br>(if using soy)<br>-24C / -11F<br>(if using canola)                                     |




- Angle to the taper between the mold walls
  - 5-15° common, use 3% CMR-1001
- Lower angle = more surface contact and difficulty to remove (more CMR)
  - < 5° considered “severe”, use 6% CMR-1001

**15° draft angle**



**10° draft angle**



**0° draft angle**



- Cresset **CRETE-LEASE® 880-THE ORIGINAL**
  - Mineral Spirits 40-50%, Naphthenic Oil 45-50%, Fatty Acid Salt 4-5%
  - GHS Hazards – Flammable 3, Aspiration 1, Eye 2B, Skin 2, STOT 3
  - 80C flashpoint, 440 g/L VOC, 6 cSt @ 20C, -26C freezing point



- Cresset **CRETE-LEASE 880-VOC-XTRA Release Agent**
  - Hydrotreated light distillates 20-25%, Naphthenic Oil 75-80%, Fatty Acid Salt 2-5%
  - GHS Hazards – Aspiration 1, Skin 2, STOT 3
  - 220C flashpoint, 240 g/L VOC, 15 cSt @ 20C, -26C freezing point



- Cenex **Concrete Form Oil**
  - Hydrotreated light distillates 60-100%; reactive add. present, unlisted
  - GHS Hazards – Aspiration 1
  - 149C flashpoint, <450 g/L VOC, 11.5 cSt @ 40C, -40C freezing point
- Cresset **CRETE-LEASE 880-VOC-XTRA Release Agent**
  - Hydrotreated



- Cresset **CRETE-LEASE® BIO-TRU®-XTRA RELEASE AGENT WITH POLY-RELEASE®**
  - 80C flashpoint, 440 g/L VOC, 6 cSt @ 20C, -26C freezing point
- Cresset **CRETE-LEASE® BIO-TRU®-ALL-XTRA RELEASE AGENT WITH POLY-RELEASE**
  - USDA Biopreferred
  - 220C flashpoint, 240 g/L VOC, 15 cSt @ 20C, -26C freezing point



- Renewable Lubricants's **Bio-Concrete Mold Release Fluid (Plus Corrosion Inhibitor)**
  - No composition info on SDS
  - 220C flashpoint, no VOC, 5 cSt @ 40C, -10C freezing point; 7.26 lb/gal
- US Spec's **Ezkote Green**
  - No composition info on SDS
  - 130C flashpoint, no VOC, 60 SUS viscosity, -23C freezing point, yr shelflife
- Nox-Crete's **Bio-Nox VS**
  - 15-40% petroleum distillates; Aspiration Toxicity 1
  - 63C flashpoint; <250 g/L VOC; -7C freezing point; 7.3 lb/gal
- Harmonious Enterprise's **Green Release**
  - 40% canola oil + "esters and fatty acid"
  - 160C flashpoint; <2 g/L VOC; -10C freezing point; 7.5 lb/gal



- **FUNCTIONAL CMR-1001RO**
  - Same treat rates as CMR-1001
  - Improved rust and oxidation performance
    - Low color change for high temperature curing
    - Prevent rust and rust stains if metal involved in the mold



- Reactive-type release agents or breakdown of ester-based barrier products can attack metals
- Added time to clean the concrete post-production and refinish/replace the mold



| Formula by wt%               | Rust-Proof                                                                                                                           | High Performance                                                                                                                                                        |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Base Fluid                   | 97%                                                                                                                                  | 94.9%                                                                                                                                                                   |
| <b>FUNCTIONAL CMR-1001RO</b> | 3%                                                                                                                                   | 3%                                                                                                                                                                      |
| <b>FUNCTIONAL PD-590</b>     |                                                                                                                                      |                                                                                                                                                                         |
| <b>FUNCTIONAL V-584</b>      |                                                                                                                                      | 2%                                                                                                                                                                      |
| <b>FUNCTIONAL DF-500</b>     |                                                                                                                                      | 0.1%                                                                                                                                                                    |
| <b>Merits</b>                | <ul style="list-style-type: none"> <li>-Protection against rust formation and rust stains in reinforced concrete or molds</li> </ul> | <ul style="list-style-type: none"> <li>-Best surface finish due to anti-sag/drip and silicone-free anti-foam formulation</li> <li>-Excellent color stability</li> </ul> |
| <b>wt% Biobased Content</b>  | >99%                                                                                                                                 | >99%                                                                                                                                                                    |
| <b>Pour Point (ASTM D97)</b> | <ul style="list-style-type: none"> <li>-12C / 10F<br/>(if using soy)</li> <li>-24C / -11F<br/>(if using canola)</li> </ul>           | <ul style="list-style-type: none"> <li>-12C / 10F<br/>(if using soy)</li> <li>-24C / -11F<br/>(if using canola)</li> </ul>                                              |



- ASTM D7373 – calculated biodegradability of petroleum + ester blends
  - Biobased Esters – 100%
    - Soybean Oil, Canola Oil, Methyl Esters
  - Renewable Synthetic Esters – 80%
    - Dioctyl adipate, diisodecyl adipate, TMP trioleate
  - PAO 2 – 80%
  - Petroleum Oils – 30% (of non-aromatic content)
    - Use Gr II/III, white oil, isoparaffin, or highly refined naphthenic oil; goal is low or no aromatics
- **Blends that meet 60% 28-day biodegradation by ASTM D7373 math:**
  - ≥60% veg oil or methyl ester + ≤40% petroleum oil
  - ≥80% PAO2 + ≤20% petroleum oil
  - ≥80% adipate + ≤20% petroleum oil



- US EPA
  - VOC standard is <450 g/L
    - ASTM E1868, test at Engineered Lubricants in St. Louis Missouri
  - US EPA Safer Choice Ingredient List (SCIL) –  
<https://www.epa.gov/saferchoice/safer-ingredients#searchList>
- USDA BioPreferred program
  - Requires 87% of all carbon to be biobased for “Concrete and Asphalt Release Fluids” category
  - Uses radiometric carbon isotope testing



- Kerosene
- High viscosity oils
- Castor oil
- Water-based emulsions
- Fluorosurfactants
- Silicone oils and emulsions
- Polyethylene/carnauba wax or petrolatum dispersions
- Many other technologies will affect paintability or post-treatment of the concrete surface (silicones, waxes, fluoro-)



- CO: US Spec
- CT: Miller-Stephenson
- FL: MAPEI, Prestress Supply Inc.
- GA: US Formliner
- IL: Fister Inc.
- MI: Strong Products LLC; ChemTrend / Freudenberg; Access Technologies
- NE: **Nox-Crete Products**; Spray-Tech Inc.
- NJ: Sika Corporation
- NY: Scott System
- OH: **Cresset Chemical Co**; **Dayton Superior**; Master Builders Solutions; **Euclid Chemical Company**; **Hill and Griffith (Grifcote)**
- PA: Architectural Polymers, Inc.; APL Supply; Smooth-On Inc.; McLube
- MA: GCP Applied Technologies
- SC: Don Construction Products Inc.
- TX: CHRYSO Inc
  
- UK: **Ecoratio**



- National Precast Concrete Association



- Precast.org
- Annual Show
- <https://precast.org/theprecastshow/sponsors/>

- Precast/Prestressed Concrete Institute



- <https://www pci.org/PCI/Directories/SupplierAssociateMember.aspx>

- Search “Release Agents”



- Choosing and Using a Form Release Agent (Concrete Construction, 1996)
- Form Release Agents (PCI paper, 1975)
- Release Agents – What are they? How do they work? (Cresset paper, 2017)
- Proper Application of Release Agents (NPCA paper, 2015)



- Concrete release agents
  - Two types
    - Barrier agents – “film strength” of higher viscosity oil (ISO 32-46)
      - Could use FUNCTIONAL VMs or tackifiers to help
    - Reactive agents – reactive, forms a passivating soap between concrete and mold; low viscosity and volatile (ISO  $\leq 15$ )
      - CMR-1001
      - CMR-1001RO for improved oxidation and corrosion stability
- Formulating is a balance of viscosity vs. volatility vs. safety vs. cost

