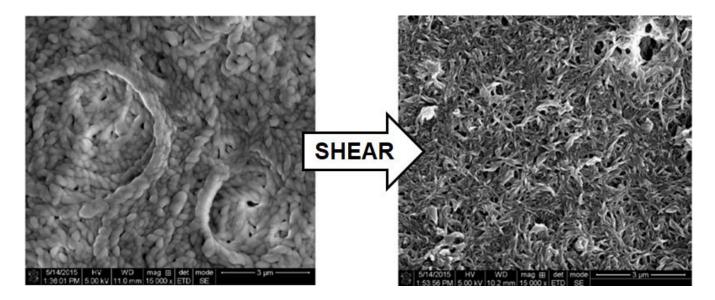
Do Polymers Affect the Mechanical Stability of Grease? Erik Willett – Functional Products Inc.

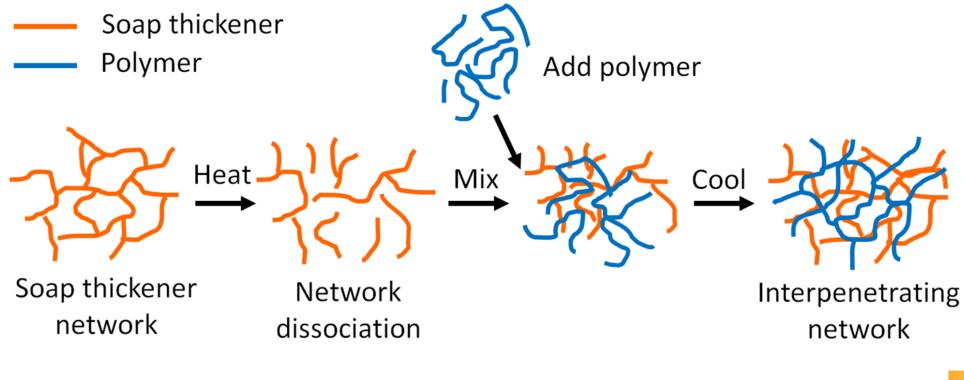
Outline


- Do polymers affect the mechanical stability of grease? Yes, but...
- Motivation
- Grease Polymer Theory
- Experimental Design
- Interpretation of Results
- Key Points

Motivation

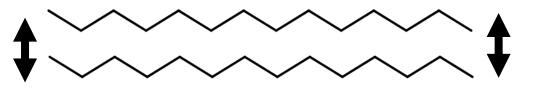
- Polymers will continue to play a role in emerging grease specs and applications
- HPM spec (water resistance, oil bleed), biobased grease, fill-for-life, EV market, etc.
- The ability to stay in grade and avoid consistency changes is critical to success

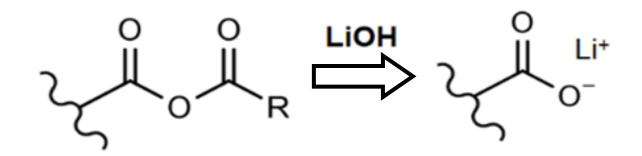
Rezasoltani, A. & Khonsari, M. M. Lubricants 4, (2016).

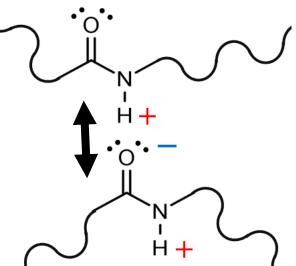


ELGI Spring Virtual Grease Symposium - April 2021

Grease Polymer

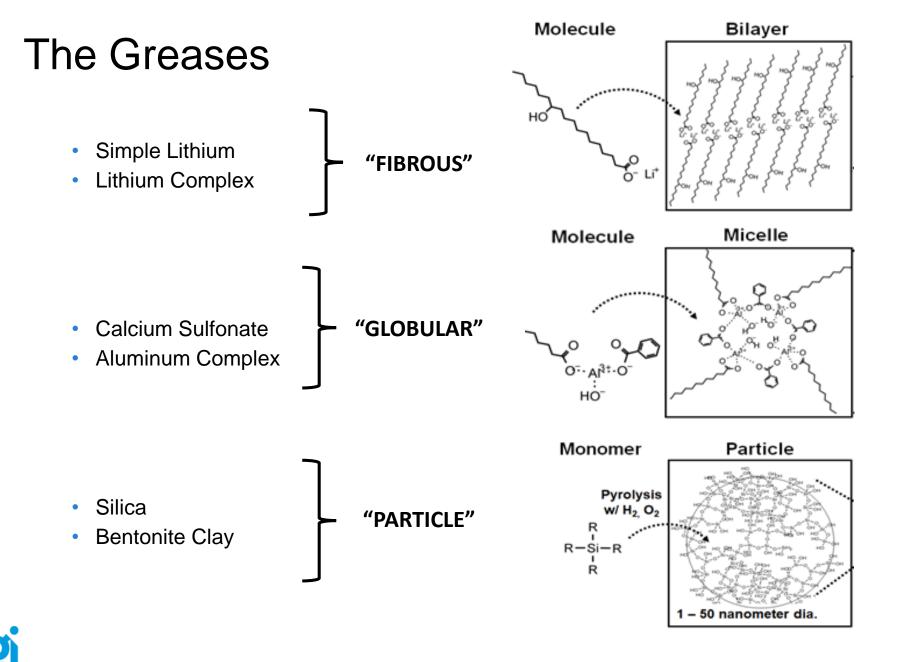

- Poorly soluble polymer which tends to mesh with the insoluble thickener rather than thicken oil
- Forms interpenetrating networks with grease thickener
- < 1wt% has significant effects on tackiness, water resistance, oil bleed, and rheology</p>


Grease Polymer Types


• **Temperature Sensitive** – long runs of ethylene or styrene form waxy linkages

• Hydrogen Bonding – interactions between polar Lewis acid (+) and base (-) sites

• **Reactive** – reaction between –OH or M⁺ with acid anhydrides


Experimental Design

1. Screen a series of greases with different structures against different polymer chemistries

- 2. We assume an increase in consistency coincides with structuring b/w grease and polymer
 - i.e. formation of an Interpenetrating Network (IPN)
- 3. We then proceed with roll stability only on the positive grease + polymer combinations to evaluate if consistency from polymer is shear stable
 - We assume negative combos have already shown mechanical instability (60x worked)

ELGI Spring Virtual Grease Symposium - April 2021

Grease Properties

- Milled commercial greases minus polymer
- Base oil sampled from oil bleed

Thickener	Cone Pen. (D1403)	NLGI Grade (D217)	Bas KV40	e Oil VI	Dropping Point (D2265)	Roll Stability (D1831)
Simple Lithium	272	2	173	VI 98	391F / 199C	+1.2%
Lithium Complex	264	2.5	125	VI 113	518F / 270C	+36.1%
Calcium Sulfonate	242	3	86	VI 111	>752F / 400C	+3.1%
Aluminum Complex	253	2.5	159	VI 108	542F / 283C	+1.5%
Silica	309	1.5	118	VI 124	642F / 339C	+2.3%
Clay (Bentonite)	350	0.5	414	VI 101	>752F / 400C	+11.3%

The Polymers

- We know:
 - Certain grease thickeners favor specific types of grease polymers
 - MW dependencies exist for parameters such as water resistance and tack
- Nine polymers selected:
 - A low and a high MW example each from four categories:
 - Temperature sensitive grease polymer
 - Hydrogen bonding grease polymer
 - Reactive grease polymer
 - Tackifier
- Plus one dispersant PMA

Polymer Details

- Low MW grease polymers = 100,000 200,000 Mw
- High MW grease polymers = 300,000 600,000 Mw
- Low MW tackifier was olefin copolymer
- High MW tackifier was an ultrahigh MW PIB
- Dispersant PMA with alkyl and amine groups (0.1% N)

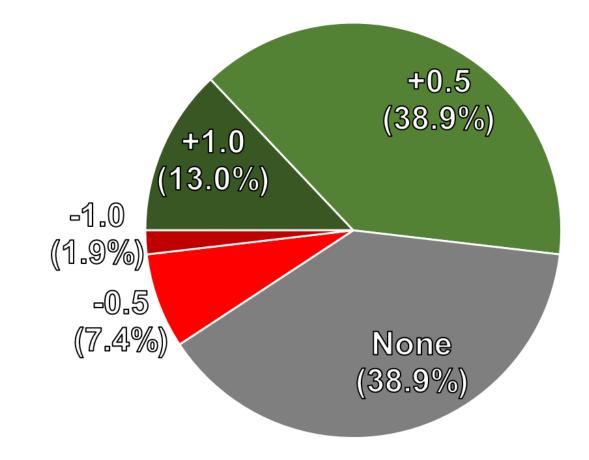
Sample Prep

- Polymers added to pre-made greases from liquid concentrate to standardize the addition between different greases and expedite the preparation of 60 samples
- 1. Each polymer diluted to 8-10wt% in 100N with mixing at 100-120°C for 24 hrs
- 2. Filtered then added at 5wt% to each base grease
- 3. Greases mixed at 80-100°C for 2 hours
- 4. Allowed to rest at room temperature for 24 hours before testing
- Control samples prepared by adding 5wt% of 100N
- Did not mill post-addition

Innovative Chemistry for Lubricants

Data Handling

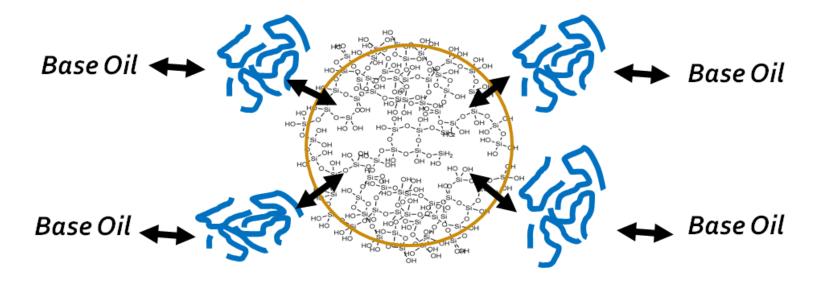
- Our goal is to cast a wide net and establish a high level study to look at trends
 - Many data points: 6 greases x (9 polymers + 2 controls) x multiple measurements...
- **Two simplifications** to data analysis:
- 1. Changes to consistency with polymer are noted only if grade changes by 0.5 or more
 - Change from 280 to 270 is still NLGI #2
- 2. Changes to roll stability are significant only if larger than method error
 - 3.8% error based on ¼ cone and average consistency tested

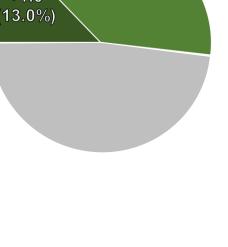

Findings – Consistency

- 54 greases:
 - ~ 52% of cases show grade increase
 - ~ 39% show no change
 - ~ 9% show grade loss

- Change in grade vs. control (5wt% oil)
- 60x worked cone penetration

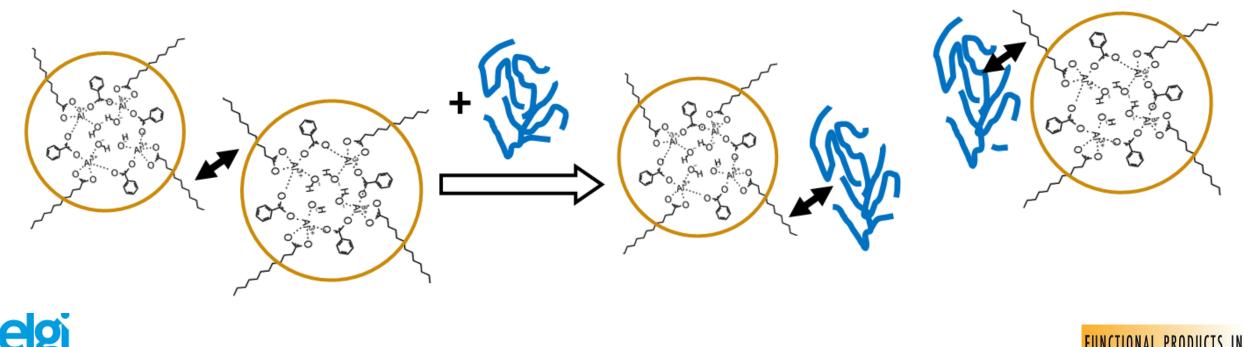
NLGI Grade Change

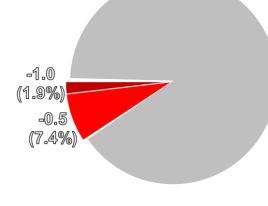

In Polymer-Modified Greases



Consistency Gain

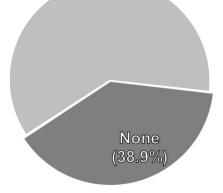
- Lithium and lithium complex greases with most polymers
- Calcium sulfonate with lube oil tackifiers
 - Clay with hydrogen bonding or reactive polymers
 - Polymer likely associating with surface sites and coupling clay to base oil
 - We see less effect on the more surface inactive silica grease

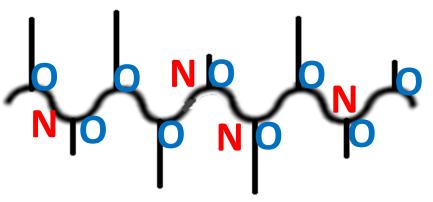



+0.5 (38.9%)

Consistency Loss

- Strange effect observed in calcium sulfonate and aluminum complex
- Most significant in stearate-based AIX w/ waxy high C2 polymers
- Waxy polymers could disrupt waxy stearate-stearate interactions that make globules?



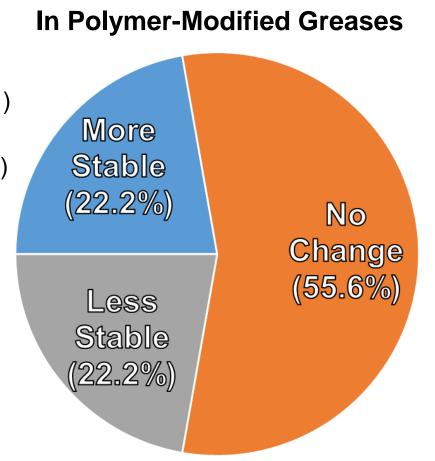

Innovative Chemistry for Lubricants

Consistency Unaffected

Silica grease

- Fumed silica, lower surface functionality than clay, more inert
- Greases with dispersant PMA
 - Polar sites in low concentration, protected by long alkyl groups
 - Low interaction w/ thickener

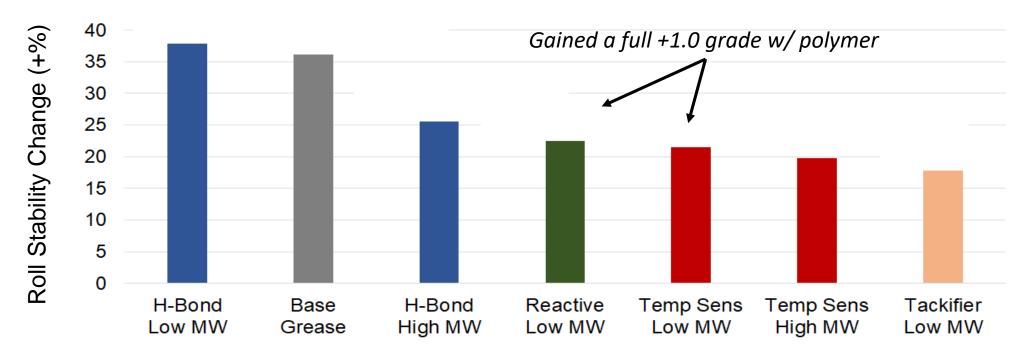
- Greases with low MW H-bonding polymer
 - Least effective grease polymer, too poorly soluble in paraffinic to perform correctly



Findings – Roll Stability

- D1831 on the 27 greases where NLGI grade increased:
 - 22.2% are more stable (lower penetration increase after D1831)
 - 22.2% are less stable (higher penetration increase after D1831)
 - 55.6% show **no change** within error

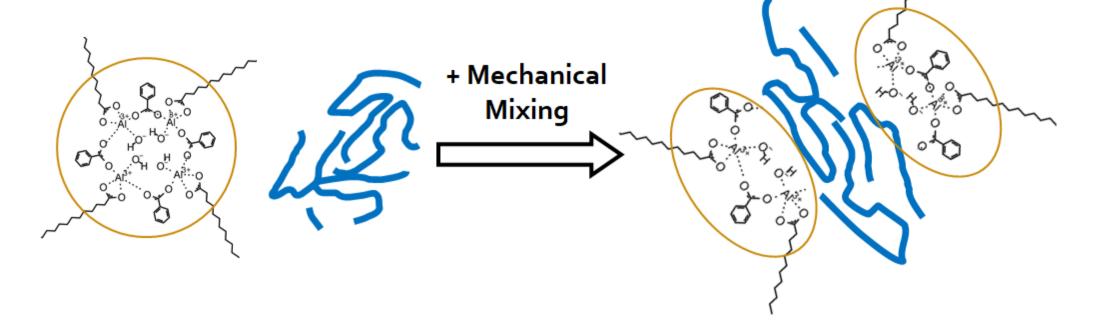
- ASTM D1831 roll stability default 2hrs @ RT
 - Error +/- 3.8% based on method precision



Roll Stability Change

Roll Stability Improves

- Almost exclusively in lithium complex grease
 - Best stability from the non-polar high MW polymer
 - Similar stability whether +0.5 or +1.0 grade



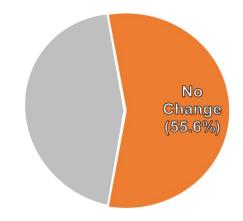
More Stable

(22.2%)

Roll Stability Worsens

- Most common in calcium sulfonate and AIX
 - H-bonding and reactive polymers are antagonistic
 - May be disrupting highly polar micelle core

• May be artifact from not milling post-addition – but not systematic for any one grease or polymer


Less Stable (22.2%)

Roll Stability Unaffected

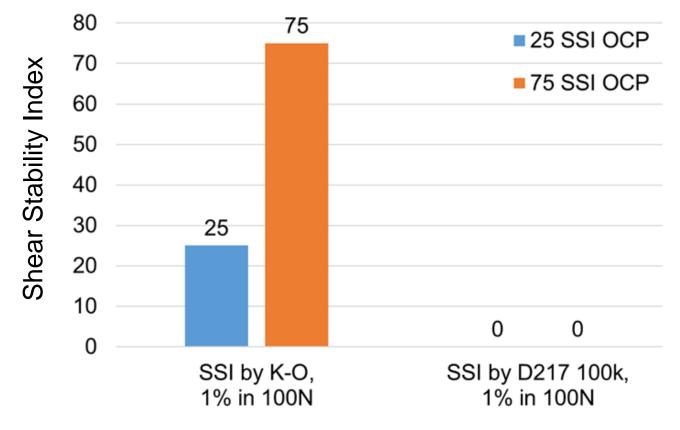
- Most common in simple lithium and clay
- May seem trivial but can still be considered a 'win' for grease polymers
- Thickener content reduced but net gain in grade from polymer
 - Implies a considerable amount of consistency now from polymer but no loss in stability

Let's consider D1831 vs. other lubricant shear methods...

Mechanical Shearing Methods

- Compare magnitude of conditions at work in D217 and D1831 versus lube shear methods
- Most grease polymers fall in MW range of engine oil polymers (25-60 SSI by K-O)

Method	Nominal Speed	Load or Pressure	Temp	Hours
ASTM D217	0.133 m/s	Undefined	25°C	2.8 to 28
Worked Cone	(60 up-down 2.625" strokes/min)			(10K - 100K)
ASTM D1831	0.755 m/s	5 kg weighted roller	25°C	2
Roll Stability	(3 35/64" dia. roller weight @ 160 rpm)			
ASTM D6278	111 m/s	2600 psi across 0.18mm	35°C	0.5
Kurt Orbahn	(170 mL/min, 0.18mm dia. nozzle)	dia.		
ASTM D2603	6,000 – 20,000 oscillations/second	Ultrasonic cavitation	40°C	0.67
Sonic Shear	0,000 - 20,000 0scillations/second	(100 – 500W)		
CEC L-45-99-A	4.15 m/s	509.9 kg	60°C	20
20 Hour KRL	(54.7mm race dia. @ 1450 rpm)	(5000 N)		


GREASE

LUBE OIL

Final Look at Shear

• Two olefin copolymers at 1wt% and 7wt% in 100N, sheared by D217 100K stroke

• ~90% less shear than D6278 K-O, the least aggressive lube shear method

ELGI Spring Virtual Grease Symposium - April 2021

Conclusions

- Grease polymers can often provide increased consistency (yield) to a variety of greases
- Increased consistency from grease polymer is generally stable and does not shear
- Different thickeners responded differently to grease polymers
 - Fibrous grease (Li and LiX) are compatible with a wide range of polymer chemistries
 - Globular grease (CaSulf and AIX) are highly selective and can often lose grade
 - Particle greases (Silica and Clay) are best with H-bonding and reactive polymers

Future Work

- 1. Test hypotheses generated from high level analysis of consistency and shear data
- 2. Microscopy on grease structures w/ and w/o polymer after shear?
- 3. Evaluate greases that did not change in grade are they more shear stable now?
- 4. Can we pick better polymers to improve roll stability?

Innovative Chemistry for Lubricant

Thank you for your attention

