Cost Effective Formulating with Functional Products

Gavin Duckworth, Erik Willett Functional Products Inc.

74th Annual STLE Meeting – Nashville Commercial Marketing Forum I 9:30 AM, Monday 20th 2019

Formulator's Dilemma

Formulating with Functional

Let us do the search so you can do the research.

Outline

Achieving formulation goals with lower cost:

- Naphthenic/OCP for high viscosity and low temperature
- Semi-Bio Approach
 - Bar&Chain
 - Hydraulics

Naphthenic OCP VM

Challenge:

Making high viscosity lubricants with good pour point is difficult High viscosity at 40°C leads to even higher viscosity at low temp.

Mining, wire rope, rail, wireline, bar & chain, heavy duty

First Approach: Using high viscosity PAO, PAG, or complex ester

Low Cost Approach: Naphthenic OCP viscosity modifier, Functional V-158FN

V-158FN – Naphthenic OCP

- 2018 paper low temperature lubricant blending
 - NLGI Development Author Award
 - Olefin Copolymers (OCP) have a stigma as bad for low temp.
 - You just need the right polymer
- We'll compare low viscosity naphthenic oil thickened with V-158FN against:
 - Polyalphaolefins (PAO)
 - Oil Soluble Polyalkyeneglycols (PAG)
 - Complex Esters
 - Naphthenic Oils

FUNCTIONAL PRODUCTS INC. Innovative Chemistry for Lubricants

Competitive Pour Points

FUNCTIONAL PRODUCTS INC.

Innovative Chemistry for Lubricants

Competitive VI

Relative Cost vs. Performance

Naphthenic Oil
V-158FN + Naphthenic
PAO
Complex Ester
PAG (Oil Soluble)

\$/lb	PP	VI	KV40
1	5	(5)	≤ 1000 cSt
2	1/2	1	Any
3	1/2	3	≤ 3400 cSt
4	4	4	Any
(5)	3	2	≤ 680 cSt

FUNCTIONAL PRODUCTS INC. Innovative Chemistry for Lubricants

Example: Wireline

Formula										
Component by wt%	ISO 68	ISO 220	ISO 460	ISO 680	ISO 1500	ISO 5000	ISO 7500	ISO 10K	ISO 12K	ISO 13K
V-158FN	20.3	34.4	43.3	48.9	60.9	80.1	87	92	95.2	96.6
Additive Package				1.54wt% H2S	Corrosion Pack	age or 4wt% E	P gear package	9	-	
Diluent Oil						US naphthenio				
ISO Viscosity Grade	ISO 68	ISO 220	ISO 460	ISO 680	ISO 1500	ISO 5000	ISO 7500	ISO 10K	ISO 12K	ISO 13K
D2270 - Viscosity Index	206	222	236	247	274	318	331	338	342	344
D97 - Pour Point, °C	-54	-48	-45	-42	-36	-27	-24	-24	-24	-24
Pounds / Gallon	7.4 - 7.5	7.4 - 7.5	7.4 - 7.5	7.4 - 7.5	7.4 - 7.5	7.4 - 7.5	7.4 - 7.5	7.4 - 7.5	7.4 - 7.5	7.4 - 7.5
D1500 - Color	Amber < 4.0	Amber < 4.0	Amber < 4.0	Amber < 4.0	Amber < 4.0	Amber < 4.0				
D665B - Turbine Oil Rust, Brine	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
D130 - Copper Strip Corrosion	1b	1b	1b	1b	1b	1b	1b	1b	1b	1b
Excellent Demulsibility	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Tackiness by Ductless Siphon	Tacky (50-65)	Tacky (50-65)	Tacky (50-65)	Tacky (50-65)	Tacky (50-65)	Tacky (50-65)				
D2596 - EP Weld Load (kgf)	200	200	200	200	250	250	250	250	250	250
w/ EP option	400	400	400	400	400	400	400	400	400	400
ESTIMATED PRICING:										
H2S Option (1.54wt% package)										
Rough Cost - \$/lb	\$0.7	\$0.8	\$0.9	\$1.0	\$1.1	\$1.2	\$1.3	\$1.3	\$1.4	\$1.4
Rough Cost - \$/gal	\$5.4	\$6.3	\$6.9	\$7.2	\$8.0	\$9.2	\$9.7	\$10.0	\$10.2	\$10.3
ED Option (4 Outly package)										
EP Option (4.0wt% package)	¢0.0	ćoo	ć1 O	¢1.0	ć1 1	¢1.2	¢1.2	¢1.4	¢1.4	¢1.4
Rough Cost - \$/lb	\$0.8	\$0.9	\$1.0	\$1.0	\$1.1	\$1.3	\$1.3	\$1.4	\$1.4 \$10.5	\$1.4
Rough Cost - \$/gal	\$5.8	\$6.6	\$7.2	\$7.6	\$8.3	\$9.5	\$10.0	\$10.3	\$10.5	\$10.5

Semi-Bio Formulations

Challenge:

Biobased bar&chain, hydraulics – customers want more biodegradability than petroleum oil without the added cost

First Approach: Build ISO 32 vegetable oils up to grade using polymer VM

Low Cost Approach: Semi-bio based strategy

Semi-Bio Bar and Chain

- ISO 100/150/220/etc. bar&chain or saw guide oils
 - Need to bring an ISO 32 vegetable oil up to grade
 - FPI offers Functional V-515 VM and Functional V-584 tackifier...
 - But petroleum products simply use base oils and low treat tackifier

Let's look at a cost / formulation breakdown

ISO 100

Bar+Chain

100

Bar&Chain Economics

ISO	100	Petro	leum	B&C

	Component	wt%	% of cost
Base Oil:	300N Gr. II	29.7	23.6
Thickener:	600N Gr. II	69.3	68.9
Tackifier:	Functional V-176	0.5	1.6
CI/PPD:	Ad-Pak	0.5	6.0

\$/lb \$0.50

\$/gal \$3.67 @ 7.3 lb/gal

ISO 100 Vegetable Oil B&C

Component	wt%	% of cost
Canola Oil	84	51.7
Functional V-515	8	22.5
Functional V-584	7.5	22.1
Ad-Pak	0.5	3.7

\$/lb \$0.81

\$/gal \$6.25 @ 7.7 lb/gal

Closer Look at Costs

Canola and other veg oils are not much more than heavy Gr. II paraffinic

- Extra cost is coming from two factors:
 - High treat of biobased viscosity modifier to reach ISO 100
 - Light/heavy paraffinic oils priced closely
 - Biobased VM cost is a multiple of veg oil cost
 - High treat of tackifier to meet the expected tackiness levels

0.5% paraffinic V-176 = 7.5% veg oil V-584

How do we solve these problems?

ISO 100 Bar+Chain

Semi-Bio B&C

Veg oil formulation is penalized for lack of cheap thickener, must use VM

- What if we try typical paraffinic thickens in canola?
 - Saves 18% cost and reduces use of tackifier

Components:
Canola
600N
150 Bright Stock
Functional V-515
Functional V-584
Ad-Pak

ISO 100	ISO 100	ISO 100
Veg	w/ BS	w/ Gr. II
84	61	41.3
		49.7
	31.6	
8	5	6.3
7.5	1.9	2.2
0.5	0.5	0.5

% Biodeg.
100
30
0
90
95
0

\$/lb	\$0.81	\$0.70	\$0.68
\$/gal	\$6.25	\$5.25	\$5.11
% Bio	98	67	64

vs. \$3.67/gal for petroleum

Lower Tackifier Treat in Bio

Low treat (0.5 - 1.0 wt%) PIB tackifiers will work if % canola < \sim 50%

• Saves an extra 5% cost

Canola
600N
Functional V-515
Functional V-584
Functional V-176
Ad-Pak

ISO 100 w/ Gr. II	ISO 100 w/ 176
41.3	43
49.7	49.7
6.3	6.3
2.2	
	0.5
0.5	0.5

% Biodeg.
100
30
90
95
30
0

\$/lb	\$0.68	\$0.64
\$/gal	\$5.11	\$4.84
% Bio	64	64

Semi-Bio Hydraulics

Canola-paraffinic blending can also save cost on biobased hydraulics

VI 200 HF with 60% biobased content

Veg Oil w/ PMA			Semi-Bio w/ PMA	
ISO 32	ISO 46	ISO 68	ISO 32	ISO 68
97.5	95.1	89.3	60.0	60.0
			36.5	19.3
				9.7
0	2.4	8.2	1.0	8.5
2.5	2.5	2.5	2.5	2.5
36.8	46.1	68.1	31.7	68.3
8.1	9.9	14.5	7.52	13.5
200	210	225	219	205
-24C	-36C	-36C	-39C	-36C
97	95	89	71	69
\$0.71	\$0.80	\$1.02	\$0.71	\$1.01
\$5.50	\$6.20	\$7.89	\$5.29	\$7.52
	97.5 0 2.5 36.8 8.1 200 -24C 97 \$0.71	ISO 32 ISO 46 97.5 95.1 0 2.4 2.5 2.5 36.8 46.1 8.1 9.9 200 210 -24C -36C 97 95 \$0.71 \$0.80	ISO 32 ISO 46 ISO 68 97.5 95.1 89.3 0 2.4 8.2 2.5 2.5 2.5 36.8 46.1 68.1 8.1 9.9 14.5 200 210 225 -24C -36C -36C 97 95 89 \$0.71 \$0.80 \$1.02	ISO 32 ISO 46 ISO 68 ISO 32 97.5 95.1 89.3 60.0 36.5 0 2.4 8.2 1.0 2.5 2.5 2.5 2.5 36.8 46.1 68.1 31.7 8.1 9.9 14.5 7.52 200 210 225 219 -24C -36C -36C -39C 97 95 89 71 \$0.71 \$0.80 \$1.02 \$0.71

%Savings: **3.7**% **4.6**%

% Savings if MH-4000 replaces PD-585: **4.6**% **10.1**%

<u>Summary</u>

- Functional Products Inc. for lubricant additives <u>and</u> services
- Low cost strategies
 - Naphthenic + OCP for high viscosity, low temperature at low cost
 - At least 50% less than comparable PAO / PAG / ester
 - Semi-bio bar & chain approach to reduce wt% VM and tackifier
 - 23% savings by using 600N + PIB tackifier
 - Semi-bio hydraulics
 - Up to 10% savings using some mineral oil and mineral oil PMA

More on Tuesday at 9:30AM:

"Evaluation of Water Soluble Polymers for Aqueous Lubricants" (Section 3K – Environmentally Friendly Fluids I)