www.functionalproducts.com

Functional Products

CLGI Kunming of Yunnan

October 10-14, 2019

FUNCTIONAL PRODUCTS INC.

Innovative Chemistry for Lubricants

- Grease polymers
 - What are they?
 - Structure
 - Mechanism of actions
- G.R.E.A.S.E.
 - Benefits
 - Test methods
- Forms available
- When/how to add to grease
- Quick picks (commercial products)

Overview

Polymers in Grease

- "Grease polymer"
 - To avoid confusion with grease thickeners: lithium complex, calcium, ...
 - Provide tack, mechanical strength, water resistance, NLGI grade
 - Helps grease to perform its duties: lubricate, seal, deliver additives (AO/CI), stay in place

- Generally incompatible or poorly soluble in mineral oils
 - Different than lube oil (gear oil, HF) polymers like PIB, PMA, OCP

Short vs. Long Range

5

- Grease network local, short range interactions
 - Ionic R-COO⁻ to Li⁺, R-SO₃⁻ to Ca²⁺
 - Hydrogen bonding R-OH to R-OH on 12-HSA
 - Waxy interactions of stearic groups, tail of sulfonates, etc.

• Polymer network – covalent C-C bonds, long range

Interpenetrating Network

• Abbreviated "IPN"

- Three mechanisms to form IPNs in grease
 - Polymer network needs a way to stay locked in around the thickener

www.functionalproducts.com

FPI Grease Portfolio

aligned along three mechanisms

- Each mechanism best targets specific grease chemistries •
 - Branches out to products that fit different roles/performance

Roles:

- Pellet/Flake
- Low viscosity liquid
- High viscosity liquid

8

- Extra tacky
- **Biobased**
- HX1
- Etc.

<u>1. Temperature Sensitive</u>

- Olefin copolymers (OCP)
 - High ethylene or styrene associate like Velcro (hook-and-loop) tape
 - "Semi-crystalline"
 - Heat temporarily melts the crystal sites
 - After cooling the sites reform around the grease network

2. Hydrogen Bonding

- High MW ester-based polymers, amides, ureas, emulsions
 - Strong attraction between H and electrons on O or N sites
 - Most useful in biobased grease

3. Reactive

- Polymers grafted with reactive anhydride species
 - Coordinate with metal ion (Li⁺, Ca²⁺) like a diacid
 - Complex with –OH on hydroxystearate like a boron ester
 - Best in ionic greases like Li Complex, Ca Sulfonate

Greater Adhesion Reduced Bleeding Elevated Tackiness Added Yield Superior Shear Resistance Enhanced Water Resistance

Greater Adhesion

- "Adhesive tack"
 - Reinforcement of attachment between the grease and a surface
- Lower MW polymers which diffuse into asperities, act as anchors

 Test methods: pull-off force (FPI method), D3121 rolling ball tack, centrifugal fling-off (D4425 Koppers, Mobil method)

Reduced Bleeding

- Oil is about 80-90% of grease
 - Non-polar hydrocarbon dispersed into polar thickener (ionic salt)
 - Opposites repel cause separation or "bleed" over time
- Bleed causes hardening, increase in NLGI grade, and customer complaints

Polymers and Oil Bleed

- Polymers
 - Two ways they reduce oil bleed:
 - 1. Like dissolves like
 - Hydrocarbon polymer is more compatible with oil than thickener
 - Greater compatibility and higher retained oil %
 - 2. <u>Osmotic pressure</u>
 - Polymers spontaneously absorb solvents and swell

Oil Bleed Performance

Treat	Oil Bleed D6184, 100°C, 30hrs
NLGI #2 Calcium Sulfonate	3.30% initial
1% V-188 liquid OCP tackifier	-24.6%
2% V-188 liquid OCP tackifier	-32.0%
1% V-211 styrene OCP flake (HX1)	-35.3%
1% V-207 semi-crystalline OCP flake	-49.3%
3% V-4004A liquid grafted-OCP	-52.2%
1% V-113 50 SSI OCP bale	-74.9%
1% V-4064 crystalline OCP flake (HX1)	-80.3%
1% V-191 emulsion	-86.0%

Hoskin Scientific 2019

- Best choice very high MW OCP, high solids emulsion, or grafted-OCP
- Test method: Oil separation by conical sieve (D6184)

Elevated Tackiness

- "Cohesive tack" Reinforcement of the internal structure of grease
 - Less prone to separating or breaking apart
- Cohesive tack contributes to performance in mechanical testing
 - No standard way to directly measure grease tack yet
 - i.e. ductless siphon for lube oil
- Functional V-176, V-188, etc.

Tackiness Testing

- D2979 Probe Tack Test instrument for adhesives
- Modified pull-off force with gauge (FPI, 2014)

- Falex tack adhesion tester (Falex, 2018)
 - Force gauge on cantilevered copper probe

"Quantitative evaluation of tackiness...", D. Vargo, O.R. Serra, B. Lipowski, Lube Magazine, Feb. 2014 "On the Right Tack", M. Moon, Lubes n' Greases – Oct. 2018 Functional / Falex collaboration – ELGI 2019

Added Yield

- Polymers provide increased consistency and higher base oil viscosity
 - Lower cone penetration, higher NLGI grade
 - Cut-back thickener or add extra oil to produce intended grade
 - More grease per kg of Li / Ca / Al / etc. thickener

Test method: D217 (cone penetration), D1403 (½-,¼-scale), worked cone
20

Superior Shear Resistance

- Shearing forces on grease
 - Mechanical crushing between surfaces
 - EP / boundary lubrication
 - High pressure flow and depressurization
 - Milling
- Continuous use under heavy-duty demands can shear down grease
 - Loss of NLGI grade
 - Increase in cone penetration
 - Changes in mechanical properties or flow

FUNCTIONAL PRODUCTS INC. Innovative Chemistry for Lubricants Networks Working Together

Grease is like concrete

- Tough but brittle
- Short-range structure
 - Small molecules (<500 g/mol)

Polymer is like rebar

Flexible Long-range structure Large molecule (100k – 1M)

FUNCTIONAL PRODUCTS INC.

Innovative Chemistry for Lubricants

Worked Cone Shear

Treat	Worked Cone – 10,000 Strokes	
	296 initial	T
NLGI #2 Lithium Complex, Mineral Oil	+8.1%	
+0.75% V-207, OCP flake	+3.0%	
+1.0% V-207, OCP flake	+1.7%	Canes L
+0.5% V-211, styrene OCP flake	+2.4%	
+1.0% V-211, styrene OCP flake	+1.3%	
+2.0% V-211, styrene OCP flake	+1.0%	88% reduction
NLGI #2 Lithium Complex, Bio-Based	+22%	
+1% V-572 liquid	+15%	
+1% V-191 emulsion	+11%	
+7% V-4004A grafted OCP	+6.1%	
+1% biobased styrene copolymer, solid	+5.7%	74% reduction

Koehler 2009

Test method: Worked cone penetration (D217/D1403) – 10,000 stroke

23

Roll Stability Shear

Treat	% Change in Cone Pene. (D1831)
NLGI #2 Lithium Complex	+11%
+1% V-211 styrene OCP flake	+4.8%
+1% V-207 OCP flake	+4.4%
+3% V-4004A grafted-OCP liquid	+1.4%
+2% V-188, OCP tackifier liquid	+4.1%
+1% V-4060, OCP pellet	+0.5%
+2% V-178, PIB tackifier, liquid	-1.4%

95% reduction

Scavini 2019

• Test method: Roll stability (D1831) – lower % change is best

Enhanced Water Resistance

- Greatly improved water spray-off and wash-out resistance
 - Adhesive + cohesive tack resists physical removal of grease
 - Increased surface tension less water absorbed into grease pores
 - Absorbed water can degrade grease over long term

Water Resistance Testing

Water spray-off, WSO (D4049)

Grease plate after test

Water wash-out, WWO (D1264)

Stanhope-SETA 2015

26

FUNCTIONAL PRODUCTS INC.

WSO/WWO Performance

Treat	WSO (D4049)	WWO (D1264)
NLGI #2 Lithium Complex	52%	26%
+1% V-207, OCP flake	24%	11%
+1% V-211 styrene OCP, flake	9%	12%
+1% V-4051 biobased grafted-OCP, liquid	23%	14%
+0.25% V-4020, grafted-OCP pellet	26%	25%
+4% V-4270 proprietary blend of liquids	7%	2%
NLGI #2 Calcium Sulfonate	72%	
+0.5% V-207, OCP flake	16%	
+1% V-207, OCP flake	7%	
+0.25% V-4020, grafted-OCP, pellet	47%	
+0.5% V-4020, grafted-OCP pellet	4%	
NLGI #2 Clay Grease	49%	
+5% V-114L, concentrated OCP liquid	48%	1.3%
+1% V-191, emulsion	10%	29%
+4% V-4004A, grafted-OCP liquid	12%	-2%

• Many polymers will favor either WSO or WWO performance

• Effectiveness depends on the match between polymer and grease

What's Next?

- Now you've seen sample data on grease polymers in generic #2 greases
 - But performance varies from grease to grease depending on formula
 - We want to show your data on your grease
 - Grease projects
 - Supply 1 gallons to a pail of base grease without polymer
 - We begin by determining the most effective mechanism
 - Drills down into individual product selection or new prod. dev.

Common In-House and Contracted Grease Test Methods (complimentary):

o Cone penetration for grease – 1/4 scale (ASTM D1403), full scale (ASTM D217)

o Worked penetration (60 – 100k stroke)

- o Water spray-off (ASTM D4049)
- o Dropping point (ASTM D566)
- o Oil separation up to 200°C (ASTM D6184)
- o Four-ball EP weld load for oil or grease (ASTM D2596)
- o Roll stability (ASTM D1863)
- o Dynamic/scanning viscosity with Brookfield viscometer

Ask for full test list including lube oil test methods

Functional will optimize grease additive treat/performance in your grease.

Forms Available

- What forms can one buy grease polymers in?
 - Solids
 - Pellet V-4020, V-4064, V-508S
 - Flake easiest to solubilize solid, V-4040P, V-4064
 - Bale uncommon but best shipping economics
 - Liquid (V-4004A, V-4270, V-4051)
 - Pre-dissolved polymer at 1 50wt%
 - Best convenience and speed of mixing
 - Dilute (400 cSt @ 100C) to concentrated (4000 cSt @ 100C)
 - Emulsion liquid (V-191)
 - Very concentrated (30-50% solids) but easy handling
 - Carries over some water
 - Few options

When/How to Add?

- Depends on the form/type of polymer
 - Use the least amount of heat necessary to get best stability
- Best practices / starting point for new blenders:

Mechanism	Form	When/How	
Temperature Sensitive	Solid Liquid	Add at end, with cooling oil Mix 1 – 3 hours	V-207
Reactive	Liquid	@ 80-100°C / 176-212°F	
Hydrogen Bonding	Solid Liquid	Add at end, with cooling oil	V-211 V-4060
Temperature Sensitive (Styrene or High Melt)	Solid	@ 100-120°C / 212-248°F	V-4064
Reactive	Solid	Add at start, before alkali	
		Add offer milling to evoid	b .
PIB/OCP Tackifiers	Liquid	shear damage	
-	10°	0	21

Odds and Ends

- Low temperature greases
 - Reduce base oil ISO VG, build up with polymer
 - Economically, use V-201
 - 60 SSI OCP and mid-level C2 content
 - Builds base oil VM and behaves like grease polymer
 - Or lower SSI VM but will need a grease polymer for G.R.E.A.S.E.
- Wireline grease
 - Not a true grease
 - 50 SSI OCP in light (60 SUS) naphthenic or paraffinic
 - Functional V-113 (solid)
 - Functional V-158FN (liquid)

Quick Picks

Every grease is its own animal –

Different thickeners, oils, grades, additives, manufacturing processes. We provide many options.

Lithium Complex

- Solid: V-4020 (0.25%), V-4040P (0.25%)
- Liquid: V-4004A (4%)

Calcium Sulfonate and Aluminum Complex

• Solid: V-207 (1%), V-211 (0.5%), V-4060 (1%)

Inorganic / Filled

• Liquid: V-191 (1%), V-4004A (4%)

Quick Picks - Specialty

Bio-based Greases

• Liquid – V-4051 (1.5%), V-191 (1%), V-572 (5-10%),

Extra Tacky

 Liquid: V-178, V-188 (1-4%)

Water Resistant

• Liquid: V-4270 (4%)

Food Grade

- HX1 Solid: V-4064 (2%)
- HX2 Solid: V-207 (1%)

Summary

- Polymers are used to influence the physical properties of grease
- IPN mechanisms define three branches of the grease portfolio
- Benefits include:
 - Greater Adhesion Reduced Bleeding Elevated Tackiness Added Yield Superior Shear Resistance Enhanced Water Resistance
- Products to meet different performance targets
 - Variety of forms to suit handling and processing abilities

