

Quantitative evaluation of tackiness in polymer-oil solutions using modified probe tack method

Functional Products Inc. www.functionalproducts.com

Outline

- Introduction
- Current Test Methods
- Adhesion and Cohesion
- Contact Angle
- Capillary Action and Surface Tension
- Experimental Methods
 - Modified Probe Tack Test
- Conclusions

Lubricant Tackifier

- Imparts tack or stringiness to a lubricant
- Used to provide adherence of oil to metal surfaces in way oils and chain lubricants
- Adds tackiness to greases, and anti-mist properties to metalworking fluids

- Composed of polymers dissolved in oil.
 - Traditionally high MW PIB in paraffinic oil

Lubricant Tackifiers Are Not Adhesive Tackifiers

- Adhesive Tackifiers:
- Used to increase the stickiness of a material
- Lower MW compounds
- Typically have high T_g
- Usually resins (e.g. rosins and their derivatives), terpenes, aliphatic, cycloaliphatic and aromatic resins, hydrogenated hydrocarbon resins, and terpene-phenol resins

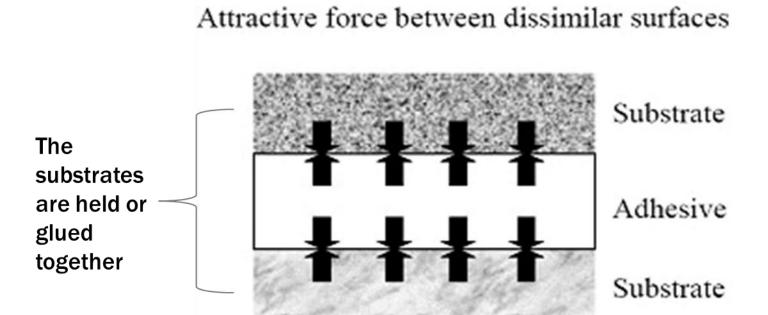
www.functionalproducts.com

330 963 3060

• Used in hot melt and pressure sensitive adhesives

Current Test Methods For Adhesives

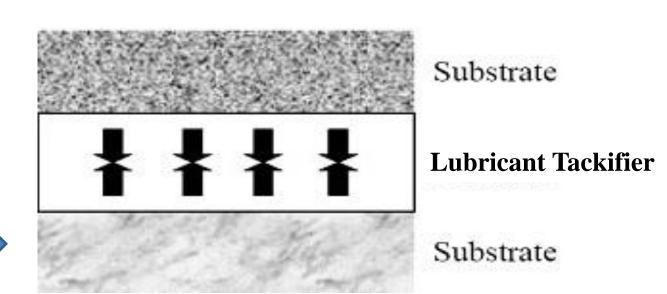
- Organizations:
 - American Society of Testing and Materials (ASTM)
 - Pressure Sensitive Tape Council (PSTC)
 - European Association of the Self-Adhesive Labelling Industry (FINAT)
 - British Standards Institution (BSI)
 - Tag and Label Manufactures Institute (TLMI)


Current Test Methods For Lubricant Tackifiers

- No standardized test methods currently exist
 - Ductless siphon
 - Brookfield spindle
 - BASF in-house method

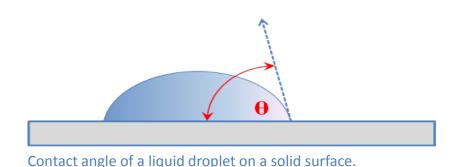
Adhesion

(Courtesy 3M)



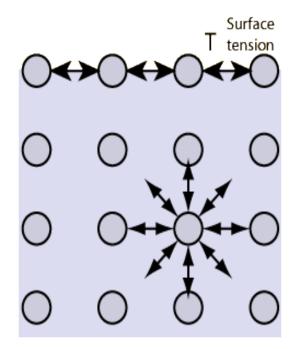
Cohesion

Internal strength of material


Can also be the oil phase in the lubricant tackifier

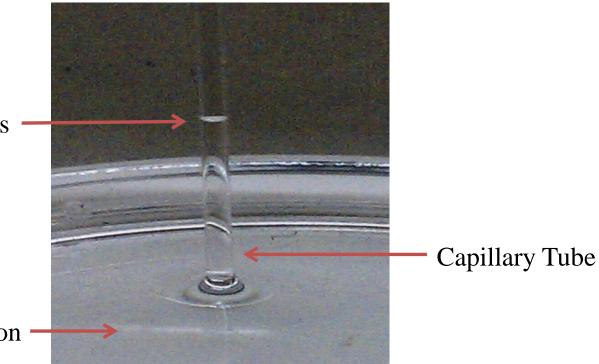
(Courtesy <u>3M</u>)

Contact Angle


 Θ < 90° increased wettability of surface; better adhesion Θ > 90° decreased wettability of surface; better cohesion

Surface Tension

The molecules at the surface of a liquid do not have other like molecules on all sides of them and consequently their cohesive forces are higher


Surface Tension

- Especially strong cohesive forces at the surface constitute surface tension
- Adhesive forces stronger than the cohesive forces lead to an upward turning meniscus and contribute to capillary action

Capillary Action

Concave Meniscus

Tackifier Solution

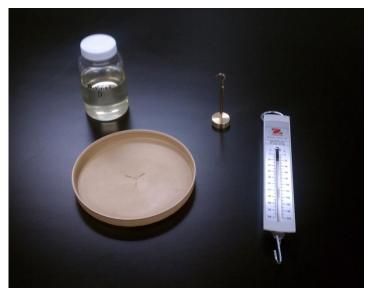
Modified Probe Tack Test (ASTM D2979) – Discussed in next slides

Capillary Test – measured the number of millimeters that a tackifier solution was drawn into a 0.7mm diameter capillary tube

Contact Angle – several samples were sent out for measurements. A contact-angle goniometer with an optical subsystem was used to capture the profile of a drop of tackifier solution on a flat glass surface

Probe Tack Test (ASTM D2979) for Adhesives:

- This test method involves bringing the tip of a probe or rod into contact with the adhesive at a controlled rate, under a fixed pressure, for a short time, at a given temperature; and
- breaking the bond formed between the probe or rod and adhesive, also at a controlled rate
- Tack is measured as the maximum force required to break the adhesive bond


Modified Probe Tack Test for Tackifier Solutions:

Equipment –

- Round flat dish with three centrically located protruding ridges.
- Ohaus model 8262-M spring balance
- 50 gram weight with an attached hook
- Camera
- 3% wt tackifier in oil solutions

Modified Probe Tack Test Equipment

0

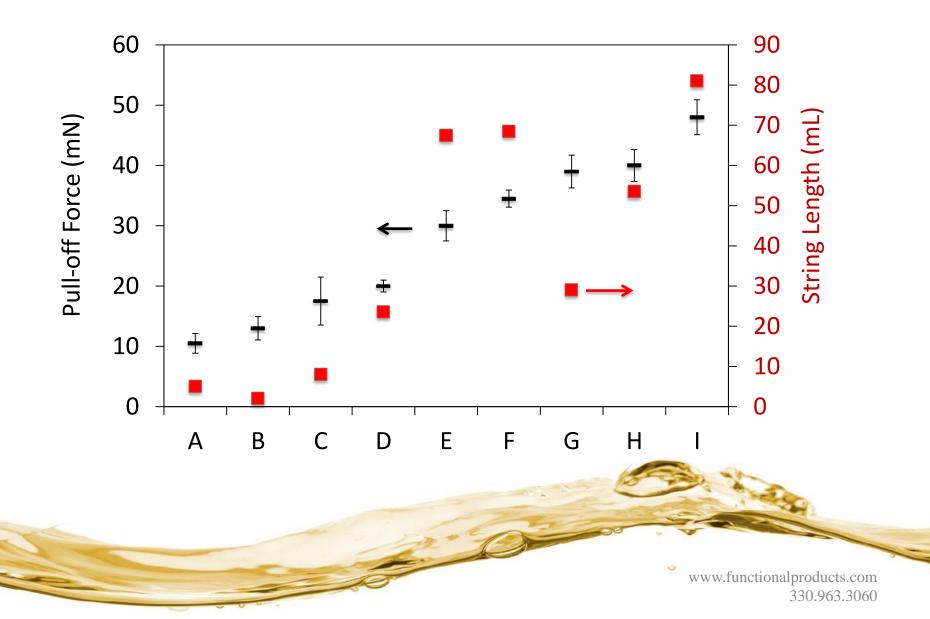
Modified Probe Tack Test for Tackifier Solutions:

Tackifier Solutions –

	Polymer	Molecular Weight	Diluent Oil
А	OCP	Low	Group I Paraffinic
В	PBR	Med	Vegetable
С	PBR/NR	Med/High	Vegetable
D	PIB	Low	Group I Paraffinic
Е	PIB/PIB	Med/Low	Group I Paraffinic
F	PIB	Med	Group I Paraffinic
G	PIB	Med	Group III Paraffinic
Н	PIB	Med	Group I Paraffinic
Ι	PIB	High	Group I Paraffinic

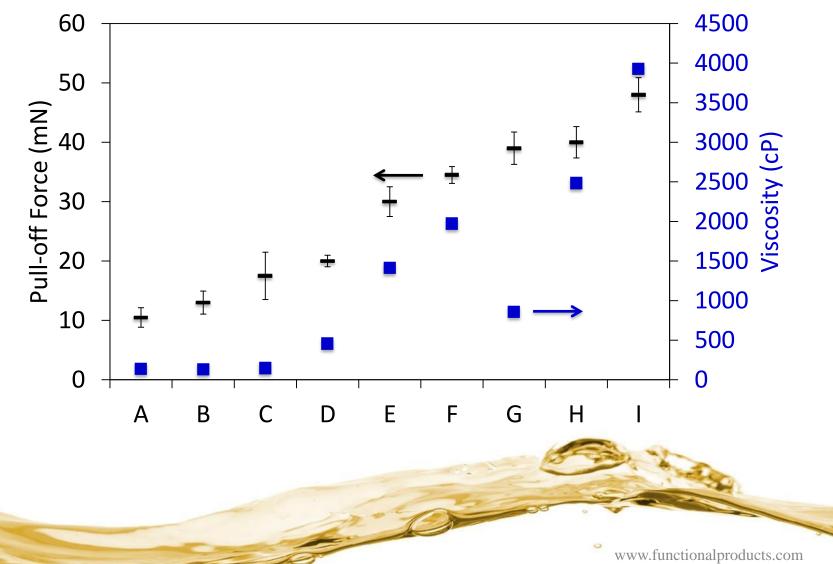
Modified Probe Tack Test for Tackifier Solutions:

- The hooked weight was placed in a tackifier solution
- Steady upward force was applied using a spring scale
- The maximum weight registering on the scale was recorded and the mass of the weight was subtracted


www.functionalproducts.com

330 963 3060

• Tack measured as the maximum force applied



Modified Probe Tack Test Results

Modified Probe Tack Test Results

330.963.3060

Capillary Height and Surface Tension Results

_					
	Height	Density	Contact Angle	Dynamic Viscosity	Surface Tension
	(mm)	(22°C, kg/m ³)	(°)	(100°C, cP)	(N/m)
Α	15	857	24.4	137.3	0.024
В	15	898		130.2	
С	16	922		145.4	
D	12	860		455.5	
Е	10	846		1411	
F	8	857	33.7	1971	0.014
G	8	830		857.8	
Н	7	864		2483	
Ι	6	845	41.0	3925	0.012

Adhesive Forces

Cohesive Forces

www.functionalproducts.com 330.963.3060

0

Capillary Height and Surface Tension Results

- As surface tension increases the adhesive forces also increase, the solutions are becoming less effective tackifiers
 - A, B, and C are less effective tackifiers
 - Better adhesion to surfaces (lower contact angle)
- There is a trade-off between increasing cohesive forces and decreasing adhesive forces
 - Shown by the inverse correlation between the pull-off force and surface tension

Conclusions

- A correlation exists between the pull-off force and string length
- There is a correlation between the pull-off force and viscosity
- Capillary height is related to adhesiveness
- An inverse relationship between adhesiveness and cohesiveness has been demonstrated.

Conclusions

- The pull-off and capillary test used in this study are relatively quick and simple to perform and require minimal equipment
- Potential tackifiers can be quantitatively evaluated and judgments can be made about their performance
 - A potential tackifier should have a high pull-off force and a low capillary height
 - Combined with previous tests and knowledge of the polymer molecular weight, a tackifier solution can be developed and evaluated more readily

