

Biobased Lubricant Technology Opportunities in Forestry: Saw Guide and Chain Oil Packages SGP-567 and CO-545

Functional Products Inc. www.functionalproducts.com

- Saw Guide Oil: 3 5 million gallons in North America
- Multiple types of chains (Sharp Chain, Green Chain): unknown, but overall volume is likely much greater than SGO
- "Small" overall market size has eliminated major additive companies from investing in specific additive packages designated and tested for these applications
- Primarily a regional demand business

Innovative Chemistry for Lubricants

Primary Market Areas

- Saw Guide SGP-567 and Sharp Chain Oils CO-545
 - Used in multiple areas inside lumber mills
 - Represent unique niche lubrication applications in forestry
 - Traditionally served with conventional mineral oil formulations
- Ecological factors and new lubrication technology bring about the transition towards biobased formulations

The Case for Biobased Lubricants

- Improved biobased technology results in superior performance
- Both applications are "total or high fluid loss" leading to contamination concerns
- Properly formulated biobased products for these applications may be better lubricants than their petroleum based counterparts

The Case for Biobased Lubricants

- Distinct finished products
 - Saw Guide Oils of varying viscosity grades and degrees of tackiness
 - Chain Lubricant specific to a variety of chain only applications

Innovative Chemistry for Lubricants

Saw Guide array

Forestry Applications

Green Chain

Sharp Chain links

AW/EP characteristics

Benefits of Biobased Saw Guide using SGP-567 Oils over Conventional Formulations			
Equivalent tack in biobased formulation using Functional V-584 and conventional formulations			
Coefficient of friction lower in biobased formulations			
All ISO grades can be met using Functional V-515 and Functional V-584 biobased thickener			
ASTM D1401			
ASTM D665 A/B plus improved humidity/salt fog performance using Functional SGP-567 XRP			
Solvency important to reduce pitch buildup			
Pour point of -30°C in canola oil with added pour point depressant			

Increased weld load in biobased formulation, acceptable wear scar in both biobased and conventional

This is not a scientific measurement of tackiness

Innovative Chemistry for Lubricants

Measuring Tack: Ductless Siphon Test

- Fluid is drawn through a standardized capillary via controlled vacuum
- Initial capillary position is below the fluid surface
- Fluid level within the cylinder drops as siphoning occurs
- A uniform string of viscoelastic fluid is formed
- Measurements of string length are objective vs. entirely subjective

Rating Tack by String Length

• Starting formulations available for:

	String Length
Tacky Saw Guide Oil	50 - 65
Very Tacky Saw Guide Oil	65 - 80
Exceptionally Tacky Saw Guide Oil	> 80

Starting Point Saw Guide Formulation: Biobased Very Tacky ISO 100 and 150

<u>Component</u>	<u>Name</u>	Treat Rate (%)
Tackifier	Functional V-584	7-11
Thickener	Functional V-515	8-11
Performance Additive Package	Functional SGP-567	1.5
Base Oil	Canola Oil	Balance

Functional Products has identified a unique bench test that provides relevant data to forestry applications

- Performance measurements
 - Wear scar
 - Coefficient of friction (C of F)
 - Specimen and fluid temperature (°F)
 - Torque

Bench Test Parameters

Innovative Chemistry for Lubricants

Test

- Speed 600 RPM
- Rotating pin against machined bars
 - **Bars C 1137 steel**
- Duration Variable

Directed load

Bench Test Parameters

PTI Epsilon Linear Precision Test Machine – a modified Pin and Vee test

Innovative Chemistry for Lubricants

Ramp Up and Staged Load Test: ISO 150 Exceptionally Tacky with SGP-567

15 min ramp up between stages: 5 min at 20 kg, 15 min at 30 kg, 15 min at 40 kg, 60 min at 60 kg.

Innovative Chemistry for Lubricants

Ramp Up and Staged Load Test: ISO 100 Tacky Saw Guide Oils

15 min ramp up between stages: 5 min at 20 kg, 15 min at 30 kg, 15 min at 40 kg, 60 min at 60 kg.

Coefficient of Friction

Coefficient of Friction (CoF) is a ratio

Force required to move a body over a horizontal surface at constant speed under an applied load

$$CoF \equiv \frac{Lubricant\ viscosity\ x\ speed}{Force\ of\ the\ perpendicular\ load\ against\ surface}$$

As the number of asperities on the surface increases, the CoF increases

Less force is required to overcome the applied load when the CoF is lower

Innovative Chemistry for Lubricants

Ramp Up and Staged Load Test

Sample Discription	ISO Grade	Relative Tack	Total Wt. Loss	
Conventional A Biobased	150	Tacky (62)	.029 g	
Unconventional B	150	Tacky (57)	.008 g	
SGP-567 in Canola Oil	150	Tacky (59)	.001 g	Average of weight loss of Canala ail based
SGP-567 in Canola Oil	150	Very Tacky (67) Exceptionally	.000 g	Averge of weight loss of Canola oil based formulas with SGP-567 is statistically zero
SGP-567 in Canola Oil	150	Tacky (98)	.000 g	

Innovative Chemistry for Lubricants

Ramp Up and Staged Load Test: ISO 150 Tacky Formulations

Innovative Chemistry for Lubricants

Ramp Up and Staged Load Test: ISO 150 Tacky Formulations

Innovative Chemistry for Lubricants

Ramp Up and Staged Load Test: ISO 150 Tacky Formulations

SGP-567 Biobased Saw Guide Oil Results

- >14% Coefficient of Friction improvement
 - Provides power and energy savings
 - Improves cutting efficiency
- Reductions in both saw and fluid temperatures
- Designed to be environmentally friendly
- Renewable resource platform, (> 90 % non-petroleum derived)

Innovative Chemistry for Lubricants

ASTM B117 Salt Fog: 2.5 Hours Exposure

Biobased ISO 150 Tacky SGP-567

Biobased ISO 150 Tacky SGP-567 XRP

ASTM D1748 Humidity Cabinet: Testing in Progress

<u>Formulation</u>	<u>Hours to Failure</u>
Conventional A ISO 150 Tacky	1176
SGP-567 ISO 150 Tacky	>2712
SGP-567 XRP ISO 150 Tacky	>2712

Biobased Chain Oil

Benefits of Biobased Chain Oils over Conventional Formulations			
Excellent tackiness	Equivalent tack in biobased formulation using V-584 and conventional formulations		
Low friction	Coefficient of friction lower in biobased formulations		
Single viscosity grade	ISO 46 can be met using V-584		
Good rust protection	Good ASTM D665 A/B performance		
Excellent wetting	Added synthetic ester for enhanced wetting		
AW characteristics	Comparable wear scar in both biobased and conventional		
Low temperature handling	Pour point of -30°C in canola oil with added pour point depressant		
EP characteristics	Biobased performs better under high load conditions		

Starting Point Formula: CO-545 ISO 46 Biobased Chain Oil

<u>Component</u>	<u>Name</u>	<u>Treat Rate (%)</u>
Tackifier and Thickener	Functional V-584	3-5
Pour Point Depressant	Functional PD-590	0.3-1.0
Performance Additive Package	Functional CO-545	1-2
Base Fluid	Canola Oil/Synthetic Ester Blend	Balance

Chain Oil Bench Test Parameters

PTI Multi-Four Ball Machine (M-4) – variable load and ball speed

Innovative Chemistry for Lubricants

Chain Oil Bench Test Parameters

Speed: 10 rpm 5 min ramp up 30 min hold at 800 kg

Innovative Chemistry for Lubricants

Ramp Up and Staged Load Test: ISO 46 with CO-545

Innovative Chemistry for Lubricants

Ramp Up and Staged Load Test: ISO 46 with CO-545

Innovative Chemistry for Lubricants

Ramp Up and Staged Load Test: ISO 46 with CO-545

CO-545 Biobased Chain Oil Results

- Coefficient of Friction improvement
 - Provides power and energy savings
- Stable fluid temperature
- Designed to be environmentally friendly
- Renewable resource platform, (> 90 % non-petroleum derived)

Advantages of SGP-567 and CO-545 Formulations over Conventional Oils

- Superior performance
 - Improved lubricity
- Lighter color than conventional formulations
- Safer for the environment
 - Renewable base fluids

Other Biobased Packages

- Functional Products also offers the following packages to formulate the following:
 - Hydraulic fluid HF-580 or HF-546
 - Open gear oil GA-502
 - Way oil WA-64 or WA-60SF
 - Rock drill oil RD-535 or RD-535CP