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Abstract 

This paper investigates tackiness of several lubricant fluids using familiar open siphon 
technique. In these experiments, evacuated sucking tube withdraws vertical free jet of 
liquids from a jar with a free surface. Dilute solutions of polyisobutelene (PIB) of 
different molecular weights and polymer concentrations in lubricating fluids, as well as 
the blends of PIB with ethylene-propylene copolymer were used in these experiments. 
Time dependences for the length and shape of free jet, and flow rate in the process were 
recorded in the experiments for several values of vacuum pressure in sucking tube and for 
several lubricant fluids. The tackiness of lubricant fluids was quantified by the ultimate 
length of free jet just before it breaks up. Experimental data were described and 
interpreted by a non-steady extension of an earlier stationary theory, modified for very 
dilute polymer solutions. Several specific phenomena were observed in the experiments, 
such as solvent exudation out of extended jet, maximum on the time dependence of flow 
rate during the process, maximum of tackiness for solutions of blends of tackifier and non 
tackifier, and a two-phase flow in sucking capillary.   
 

1. Introduction 

In many industrial applications the lubricating oil must not drip or mist from the bearings. 

It can be practically achieved by increase in cohesion energy of lubricant fluid, which 

prevents its atomization, while keeping the oil viscosity as low as possible, which 

prevents the liquid from excess in wasting energy.  Just the texture of such optimal 

lubricating oil should be stringy, preventing oil loss and increasing lubrication time for 

machineries where the oil waste is a problem. To satisfy the above industrial needs, the 

lubricating industry has invented and utilized special types of lubricating oils containing 

tackifiers, which are solutions of polymers in oil. Till the present, typical applications of 

tacky lubricants are limited to high molecular weight polyisobutelene (PIB) dissolved in 

petroleum oil.  
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For polymer solutions to be tacky, the polymer chains should have a capacity to 

extend. It means that the tacky lubricants fluids should have elastic properties or to be 

viscoelastic liquids. To be less viscous and cheaper, they should also be very dilute 

polymer solutions in lubricant oils. It is well known that the viscoelastic properties of 

polymer solutions depend on polymer concentration and several molecular parameters of 

polymer determined by its chemical structure [1-3]. The most important parameters are 

the polymer molecular weight (and to some extend, the molecular weight distribution) 

and the flexibility of polymer chains; the latter being responsible for uncoiling of chains 

with smaller Kuhn segment, or orientation of chains in the direction of extension for 

more rigid chains. Another important parameter of a tacky polymer solution is the 

viscosity of the base solvent. Preparation and testing of various lubricants with enhanced 

tackiness is in high demand for lubricant application. Yet to the best of the author’s 

knowledge, there are no studies of the tackiness phenomena in lubricant polymer 

solutions.  

The present paper investigates the tackiness of very dilute solutions of polymer 

containing lubricants using the well-known open siphon method introduced and described 

in paper [4] (see also the monographs [5,6]).  In this method, elastic liquids are vertically 

withdrawn out of a jar by a vacuum connected capillary. The suction pulls upwards a 

tacky liquid out of the jar forming a free jet (string). More tacky fluids draw a longer jet 

in air than less tacky ones, whereas non-tacky fluids are not drawn upwards at all.  Basic 

experiments and theory analyzing the open siphon phenomena on example of water 

solutions of polyethylene oxide (PEO) were initiated in paper [7], using a viscoelastic 

approach. Prokunin [8], utilizing the idea of relaxation liquid-solid transition [6], 

developed the theory further, considering the free jet withdrawn from viscoelastic 

solution, as a pure elastic gel. He found a good comparison between his calculations and 

experiments of paper [7].  These results were later reviewed in monograph [6]. The 

experimental and theoretical results in papers [7,8] described, however, only the 

stationary processes of withdrawal of free viscoelastic jets by a rotating drum, where the 

constant speed of withdrawal and the flow rate of the fluid were controlled by the speed 

of drum rotation. Additionally, the experiments [7,8] were conducted on concentrated 

water solutions of very high molecular weight PEO with polymer volume concentration 
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0.5%.  Thus to analyze and describe the withdrawal of viscoelastic jets of very dilute 

polymer solutions in the non-stationary sucking open siphon process, the previously 

developed stationary theory [6, 8] has to be modified.  

It should also be mentioned that the problem of withdrawal of viscoelastic liquids 

seems similar to the withdrawal of viscous liquids by a vertically moving flat (or 

cylindrical) plate. In this problem a viscous liquid forms a thin layer near the rigid plate 

under the action of viscosity, gravity and surface tension. The solution of the problem 

mastered by Landau and Levich [9, 10] uses a matching condition between viscous flow 

and static meniscus. In spite of seeming similarity between these two problems, 

withdrawing of polymer solutions from a free surface is more complicated because the 

radius of extendable jet, varied with height is a priory unknown. 

The paper is organized as follows. Section 2 describes the experimental set up, 

procedures and the fluids used in experiments. Section 3 introduces some basic facts of 

viscoelasticity known for polymeric liquids. Section 4, using a quasi-steady approach, 

modifies the theory [6,8] in the non-steady case of the open siphon with sucking devise, 

and applies it to very dilute polymer solutions. Section 5 discusses the quantitative 

experimental findings and describes the data using the theory of Section 4. Section 6 

applies the open siphoning method for evaluations of tackiness in two different lubricant 

oils. Concluding remarks are given in the last Section 7 of the paper.    

 

2. Experimental set up, procedures and fluids 

 

The experimental device used for testing tackiness of lubricating fluids is similar to those 

described in Refs.[4,5]. The set up is explained in Fig.1 where the glass tube (capillary) 

with inner diameter of 1.58 mm and length 120 mm is connected to the common vacuum 

equipment. We used in the experiments three values of vacuum pressures vp equal to 68, 

77.3 and 84 KPa. The graduated glass cylinder (“jar”) filled with a tested fluid was of 

inner diameter 28mm and height 190mm. To quantify the jet profiles we used the Konica 

Minolta A4 camera and computer, equipped with Adobe Photoshop CS2 program for 

enlarging pictures of the jet.  
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      Experimental set up for testing tackiness. 

 

 The experimental procedure was as follows. The capillary was lowered in the jar 

filled with the tested liquid, so the lower sucking end of capillary was initially below the 

liquid surface. Then the capillary was held in this position during the test. The suction 

pulled the liquid into the capillary and lowered the level of liquid in the jar. The 

experiment began at the moment when falling liquid surface in the jar reached the lower 

end of the capillary. Starting from this moment a free jet of a tacky liquid was formed. 

The siphon draws down the level of liquid in jar, increasing the length of free jet and 

making it progressively thinner. Flow rate q measured by graduated jar-cylinder was 

dependent on applied vacuum; the higher the vacuum the higher was the flow rate. At 

small flow rates the jet was broken, at large enough flow rate the jet lost its axial 

symmetry and the flow rate oscillated with time. We chose the above range of vacuum 



 5

pressure to prevent breakage and high oscillation. But even in this range we observed 

some sporadic oscillation of the jet. Because of this we repeated each measurement three 

times, recording an average value for calculations. The photo of the jet shown in Figures 

2a,b demonstrates a very characteristic feature of the jet, a relatively large viscoelastic 

meniscus near the free surface. Some traces of instability are also seen in these Figures.  

  

 

Fig.2a,b.  Photographs of free tacky jets for 0.025% PIB solution in lubricant oil. 

 

We measured the size and shape of the jet by taking photographs every 25 

seconds after the beginning of withdrawing. The maximum length of the free jet 

supported by the vacuum is recorded as a “string length” or tackiness. Photos were 

enlarged in the computer using Adobe Photoshop CS2 program. Using the printed 

pictures we measured the jet radius r at different distances z  from the liquid surface and 

at different flow rates q. Special attention were given to measurements of parameters of 

meniscus which appears at the moment of disconnecting the capillary and fluid. These are 

the radius of meniscus R and radius of jet 0r  at the top of meniscus, measured at different 

flow rates q.  

In the main part of experiment discussed in Section 5, we used 0.025% (weight)  

PIB solution with viscosity average molecular weight Mη =
62.1 10× [11] in the oil ISO 

68, which has viscosities sη ≈ 0.138 , 0.0585, and 0.0073 Pa ⋅ s at 20, 40 and 100ºC, 

respectively. Viscosities were measured by using capillary ASTM D 445 method. The 
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density sρ of this oil at 25ºC is equal 0.86 g/cm 3 . Surface tension sγ  at 20º is equal to 2.7 

Pa ⋅ cm [12].  

In other, industrially driven experiments, whose results are briefly discussed in 

Section 6 we also used various PIB with Mη =
60.9 10× , 61.6 10× , 64.0 10× , with weight 

concentration varied from 0.005% to 0.12%, dissolved in the mineral oil with viscosity sη  

at 40ºC equal to 0.068 and 0.022 Pa sec⋅ . These are the standard ISO Grades ISO 68 and 

ISO 22 oils widely used in lubrication industry. Solution of ethylene propylene 

copolymer with molecular weight about 200,000 was also used. Polymers were 

granulated and then dissolved in oil in a glass container on hot plate with low-shear 

agitation. The time of dissolution was approximately 48 hours.  

 

3. Viscoelastic effects in withdrawal of tacky lubricants 

 

As viscoelastic polymer dilute solutions, the tacky lubricant liquids can be characterized 

by three basic parameters, solvent viscosity sη , the polymer volume concentration c , and 

relaxation timeθ .  It is well known that at the very small concentrations of polymer 

additives, the viscosities η  of polymer solutions practically coincided with those sη  for 

the mineral oil solvents. Nevertheless, adding very small concentrations of PIB into the 

mineral oil dramatically increases the relaxation time θ of the solutions.  

      Elastic liquids, by their reply to external actions, are in an intermediate position 

between viscous liquids and elastic solids. They behave as viscous liquids at low rates of 

external actions and as elastic solids when these rates are high. This type of behavior is 

commonly estimated by the non-dimensional Weissenberg numberWe . In extensional 

flows, including the problem of withdrawal, it is presented as [6]: 

                      We θ ε= ⋅ & .                                                                              (1)     

Here ε& is the elongation rate, i.e. velocity gradient in the direction of extension 

(withdrawal). When extensional rate is low 1We << a viscoelastic liquid behaves as a 

viscous one. In the opposite case when 1We >> , the solid-like properties of viscoelastic 

liquids dominate and they behave as elastic solids.  
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 Along with well known basic facts, many elastic liquids display a fast transition 

from the liquid-like to the solid-like behavior when passing through a certain threshold 

cWe in the Weissenberg number. This phenomenon called the fluidity loss, has been well 

documented for narrowly distributed polymers and treated as a relaxation transition (e.g. 

see the mograph [6] and references there). The underlying physics of this transition is that 

the highly oriented polymer molecules in certain flows create physical cross-links which 

cause effective gelation of polymers and ceasing the flow. In case of withdrawal of dilute 

polymer solutions the fluidity loss effect assumed in Refs. [6, 8] could also be caused by 

an increase in polymer concentration in intense extensional flows near the axis of 

extension. This might happen because the fluid trajectories in extensional flows cause the 

polymer macromolecules closely approach each other. 

 

4. Theoretical model 

 

In order to make clear the basic physics of processes in the withdrawal of tacky lubricants 

we now discuss modification of the theoretical model developed in Refs.[6-8]. This 

modification is based on the following assumptions: (i) the effect of fluidity loss plays a 

dominant role in the jet withdrawal, (ii) the inertia phenomena are negligible in dynamics 

of polymer jet withdrawal, and (iii) exudation of solvent out of withdrawn jet is important 

in case of dilute polymer solutions.  

The first and second assumptions have been employed and proved valid in paper 

[8] on example of 0.5% water solution of very high molecular weight PEO. In case of 

dilute polymer solutions the validity of these assumptions is a priori unknown. 

Neglecting inertia effects allows one to extend the stationary theory to the non-stationary 

case, using the quasi-steady approach. The third assumption comes from observations of 

withdrawn lubricant jets, and plays important role in the following modeling. 

 To develop a formal model we introduce the vertical coordinate z , which 

coincides with the jet centerline and is counted off the moving free surface (Fig.3). So the 

origin 0z = is located at the free surface, and the upper coordinate ( )z l t=  at the capillary 

entrance indicates the length of visible jet at time t . It is convenient for theoretical 

treatment to roughly separate the whole domain of the liquid flow in the three regions: 
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region 3 { 0}z < located under free surface, meniscus region 2{0 ( )}z R t≤ ≤  located from 

the free surface up to the end of meniscus, and the region1 of free jet 

motion{ ( ) ( )}R t z l t≤ ≤  (see Fig.3). Here the functions ( )R t and ( )l t are unknown and 

have to be determined. Basic flow effects which occur in the three regions of flow could 

be qualitatively described as follows [6-8]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3. Schematics of jet withdrawal 

 In the region 3 the sucking effect from capillary causes a specific extensional 

flow. This flow, slowly changing in time, looks like an effective undersurface jet which 

narrows from the bottom to the surface. Therefore the vertical velocity of jet and the 

characteristic extensional velocity gradient /dV dzε ≈& are increased when approaching 

the surface from below. Substituting this value of ε& into (1) explains the increase in the 

Weissenberg number, which might cause the relaxation fluid-solid transition. It was 

speculated in Refs. [6,8] that the complete relaxation transition happens in the region 2, 
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where still viscoelastic polymer solution  forms a free jet which is squeezed under 

additional action of surface tension. In the region 1 the free jet can be treated as an 

elastic gel swollen in solvent, which has a string-like shape, and is under the action of 

extensional force, gravity and surface tension. 

 For describing the free jet behavior in the region 2 we will use a semi-empirical 

approach [6-8] instead of analyzing complicated viscoelastic flow in the regions 2 and 3.  

This approach roughly approximates the shape of static meniscus by the expression: 

     2 2
0( , ) ( )r z t r R R R z≈ + − − −      (0 )z R≤ ≤ .                                       (2) 

Here ( )R t  is the maximum height of meniscus and 0 ( )r t is the initial (maximal) radius of 

the free jet. The geometrical picture of this approximation is sketched in Fig.3, although 

the circle of radius R with a horizontal tangent at 0z =  surely cannot smoothly touch the 

meniscus surface at 0r r= . In spite of its very approximate character, formula (2) allows 

describe some critical phenomena at low flow rates and also interpret the measurements 

of jet radius near the free surface 0z = .  

In spite of very dilute character of polymer solutions in our study, we assume that   

the analysis of jet behavior in the region 2 is identical to that in Refs. [6,8]. Utilizing 

dimensional and geometrical arguments, this approach yields the relations: 

                        ( )1/3 1/3 2 2 2/3
0 0 0( ) ;   ( )   ( )R q r q S r qα θ β θ π πβ θ= = = = ,                         (3) 

0 0 0  2 / 2 /gmR R gm r rσ ρ νγ ρ ν γ≈ + = + .                                        (4) 

Here 0σ is the stress at the initial jet radius 0r , ( )q t is the flow rate, θ  is a characteristic 

relaxation time, ρ and γ are the density and surface tension of solution, respectively, 

whose values will be evaluated by the corresponding values sρ and sγ mentioned for 

solvent. Also in (3) and (4), α and β are numerical parameters, whose values are 

estimated by fitting, and       

  /ν α β= ,       2 2( ) [2 / 3 (1 1/ ) ( / 2)(1 1/ )]m m ν ν ν π ν= = + + − + .           (5) 

The first and second terms in identical expressions (4) for stress 0σ  describe 

respectively the contributions of weight and surface tension of the liquid column in the 

meniscus area 2. The bottom stress 0σ , being due to (4) a function only of R (or 0r ), has a 
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minimum at cR R=  (or 0 )cr . The minimum value of initial stress 0minσ and corresponding 

values of cR (or 0 )cr and cq are given by: 

  
1/ 2 1/ 2 1/ 2 3/ 2

0min 1 2 0 2 3
2

1 2 2 3 2

ˆ( ) ,      [ /( )] ,   [ /( )]     [ /( )]
ˆ                    8 ,    2 / ,   2 /( ),    /

c c cc g R c g r c g q c g

c m c m c m c c

σ ρ γ γ ρ γ ρ θ γ ρ

ν ν ν α

= = = =

= = = =
.  (6)                           

Here numerical parameters 1 2 2 3ˆ, , , and c c c c  are calculated using (5). The values of 

cR (or 0 )cr and cq have a physical sense of critical parameters, below which the jet 

structure does not exist [6, 8]. Remarkably, these values depend only on the equilibrium 

physical parameters of the fluid, its density ρ and surface tensionγ , being independent of 

the withdrawal conditions and viscoelastic constants of liquid. 

 In order to analyze the jet behavior in the region 1 we mention first unusual flow 

phenomenon in the sucking tube (capillary), recorded in experiments and shown by a 

photograph in Fig.4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4. Photographs of two-phase motion of jet in capillary. 
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Here the jet entered the tube with considerably less diameter than the inner capillary 

diameter, and at higher vacuum, seemingly continued its extending up to the upper 

capillary end. It means that instead of visible jet length ( )l t introduced above, the total jet 

length ( )L t  at higher vacuum should be considered as the real dynamic variable, where  

                               ( ) ( ) TL t l t l= + ,                                                              (7) 

and Tl is the sucking tube length. 

       In case of withdrawal of dilute polymer solutions, an additional effect of strain 

induced exudation of solvent should also be taken into account. Although the kinetics of 

this process is unknown, the flow of a thin film of solvent covering the gelled jet, swollen 

in the solvent, is guessed to be much the same as in case of thin film withdrawn from a 

vessel by a vertically wall moving upwards, i.e. controlled by the vertical drag speed, 

viscosity, gravity and surface tension [9].  

 To take into account solvent exudation we introduce the two-phase model of jet 

sketched in the box of Fig.3, where the actual radius r of jet is represented as the sum of 

actual radius gr of the gelled jet and the precipitated film thickness h , i.e. gr r h= + . At 

any radius r , we roughly treat the core of the swollen jet with radius gr as an elastic solid 

with large deformations, whereas the peripheral thin film of solvent with thickness h as a 

viscous liquid. We neglect the contribution of the solvent film in axial stretching stress. 

Yet we consider in this two-phase model the local surface tension effect as acting on the 

total radius r . 

 We then roughly hypothesize that the film thickness h depends only on time. 

Using also the scaling argument, we assume that 0 ( )h r tξ≈ where ( / ) 1cq qξ ξ= ≤  is a 

positive increasing function, and 0 ( )r t is the maximum radius of the jet at time t (see 

Figure 3). Thus this two-phase approach yields the kinematical relation: 

   0( ) ( / ( )) ( )g g cr r h t r q q t r tξ= + = + .                                                       (8) 

 

Neglecting a possible effect of the solvent film in the region 2, the dependence 0 ( )r t will 

be calculated at the end of this Section, using the kinetics of jet withdrawal and analyzing 

effects in the region 2. The function ( / ( ))cq q tξ will be proposed in the next Section. 
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 We now use the above assumption that in the region 1, the core of gelled jet 

behaves as a weakly cross-linked purely elastic solid with a very low elastic modulus µ  

and very large elastic strain  ( 1)λ >> . We employ in the region 1 slightly inhomogeneous 

quasi-1D common approach, almost the same as in the homogeneous extension (e.g. see 

[6,8]). Then using (8) yields:  

                                2 2
0 0 0 0 0( / ) [(1 ) /( ) ]g gr r r r rλ λ λ ξ ξ= = − − .                                         (9) 

                                  ( / ) /nn rσ µ λ γ≈ −        ( ( 1)n > .                                                 (10) 

Here λ andσ are stretch ratio and stress, respectively, n is a numerical parameter 

characterizing a specific elastic potential [8], and 0λ is an extensional stretch ratio 

attributed to the liquid-solid transition in the region 2.  

 The non-inertial momentum and mass balance equations, averaged over the jet 

cross section can be written in the form similar to those used in Refs. [6, 8]: 

                        ( ) 2 2/ 2    ( ,  )g g gd dz S S gS S r S rσ γ π ρ π π− = = =                     (11) 

                                         ( )g g f fuS u S u S q t= + =     ( f gS S S= − )                               (12) 

Here , gS S and fS are the total, occupied by gel and by solvent film cross-sectional areas, 

respectively, r is the actual radius of jet, , gu u and fu are the total, gel and solvent film  

vertical velocities, respectively. Note that if gu u≈ then fu u≈ either. It means that the 

solvent film is drawn upwards with the same speed as the gel. 

Substituting (9) and (10) into (11) yields the following solution of stress-strain 

problem (4)-(6) described by the two-phase model:  

  

2 2

0 0 0
0

0 0 0

0 0 0

(1 ) (1 )1 1 1,      1    

                                   ( / ) 

n n
r G rnG z R
r r r n g r r g r r

G r

ξ ξγ γσ
ξ ρ ξ ρ

σ γ

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞− −− ⎢ ⎥= − − = ⋅ − − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟− −⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
= +

     (13) 

Formulae (13) in the limit 0ξ → have the same form as in Refs. [6,8]. Parameters 

0 0 0 0, , ,r S Gσ  in (8) are slow functions of time. They represent the boundary values of 

respective variables at the level z R= . These boundary values should be determined by 

matching the behavior of liquid in the regions 1 and 2. Also the function 0( / )cq qξ is a 

slow function of time. As soon as these values are found, the jet profile and the stress 
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distribution along the jet in the region ( ( ))R z L t< <  are determined for any time instant 

from relations (13). 

 We now consider the long jets with such large values of z that the surface tension 

effects on the stress are negligible as compared with the gravity. For these values of z the 

solution of (13) of the withdrawal problem has the asymptotic form found in Refs. [6, 8]: 

               ( 1)           ( ( 1) / )
1

n m cg z R c m n n
n c

σ ρ −⎛ ⎞≈ + = −⎜ ⎟−⎝ ⎠
                         (14)   

Here the numerical parameter c is again expressed via α and β using relations (12). 

When the first term in bracket in (14) dominates, the simplified expression will be used: 

    /( 1)gzn nσ ρ≈ −     ( )z R>> .                                         (15)                               

 The above formulae (9)-(15) have been obtained in [8] for stationary withdrawal 

problem in the limit 0ξ → using the non-inertial approach. In [8], the characteristic 

sizes R  and 0r of the meniscus as well as the flow rate q have certain constant values. In 

the non-steady case of jet withdrawal under study, these formulae are still valid because 

of a slow non-inertial approach, although the basic kinematical variables of the process, 

the length of withdrawn jet ( )L t and the flow rate q  are now some functions of time t . To 

determine these functions ( )L t and ( )q t , we will use two additional physical conditions. 

 The first, kinematical condition evident from Figures 1 and 3 is:  

                  ( ) /q t A dL dt= ⋅ .                                                          (16)     

Here 2
jA rπ= is the cross-sectional area of the measuring cylinder (jar). Equation (16) 

shows that the change in length of the withdrawn jet is caused by the decrease of the 

liquid level in the jar.  

 The second, dynamic condition describes the dependence of flow rate on the 

pressure drop for the liquid flow in the sucking capillary. If there were a back gel-fluid 

transition in the sucking capillary, this dependence must be described by the well-known 

linear Poiseuille formula. However, this back gel-fluid transition was never observed in 

the sucking capillary. Instead, a very complicated two-phase flow shown in Fig. 4, occurs 

there. It seems that at the highest vacuum, the jet continues being extended in the sucking 

capillary up to its very end. After that the jet brakes down of the two-phase liquid-air 

mixture in the adjacent tube. At lower values of vacuum, this braking process happens in 
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the sucking capillary. Because of relative slowness of withdrawal process, this typically 

viscous, complicated flow could still be described by a linear hydraulic type relation 

between the pressure drop and flow rate: 

    v( )   ( )Lq k k constσ σ≈ − = ,  v vap pσ = − .                                         (17) 

Here vσ is the pulling stress due to vacuum, vp and ap are the absolute vacuum and 

atmospheric pressures, respectively, and Lσ is the acting elastic stress in the jet at the 

level ( )z L t= . The constant k of dimensionality 3 /( sec)cm Pa ⋅ describes the hydraulic 

resistance of jet at the end of sucking capillary. It should be evaluated by comparison of 

the theory with experimental data. 

 Determining Lσ from asymptotic formula (15) at ( )z L t= and substituting it along 

with (17) into (16) yields the kinetic equation describing the time evolution of ( )L t : 

                            / udL dt sL sL+ = .                                                         (18) 

Here s is a parameter of dimensionality of 1/sec, and uL is the ultimate length of the whole 

jet achievable with a given vacuum; these parameters being described as:                 

                                        
1

n gks
n A

ρ
= ⋅

−
,   v1

gu
nL

n
σ
ρ

−
= ⋅   .                                         (19)      

Beginning with a time *t where the asymptotic expression (15) is valid, solution of 

equation (18) is presented as: 

                         *( ) {1 exp[ ( )]}uL t L s t t= ⋅ − − −     ( *t t≥ ).                          (20)   

Finally (16) and (20) yield the asymptotic expression for the flow rate: 

                               *exp[ ( )]uq s L s t t= ⋅ ⋅ − −      ( *t t≥ ).                            (21)  

Formulas (19) and (21) will be used in the next Section for evaluation of parameters s and 

elastic constant of gel n . We should remind once again that these relations are reliable 

only after a certain time *t  elapsed from the beginning of the withdrawal process when 

the formula (15) is valid.  

To describe the whole process from its very beginning one should employ 

numerical calculations using equations (3)-(5), (13), (16) and (17) where ( )z L t= ,  

( ( )) ( )lS S l t S t= ≡ . Although these calculations can be performed relatively easily, the 
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problem is that the beginning of withdrawal is accompanied by a poorly understood two-

phase motion of jet in capillary.  

 

5. Experimental results with a 0.025% PIB solution; comparison with the theory 

We first attract attention to the jet photographs presented in Figures 2a,b made with 5.3 

magnification. There are clearly seen some horizontal ripples on the jet, which might be 

explained by secondary instability of solvent film exuded out of solvent. This instability 

well known for the liquid films flowing down on inclined surfaces [10], indirectly 

confirms the very fact of exudation of the solvent from the withdrawn jet.   

With increasing time of withdrawing the diameter of jet dramatically decreases. 

The amount of liquid sucked from calibrated cylinder was measured every 5 sec. Using 

these data the time dependences of flow rate q ( 3 / seccm ) were determined for different 

applied values of vacuum (Fig.5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5. Time dependences of flow rate for different vacuum values (shown in the 

box).  0.025% PIB solution in lubricant oil.  

 

At the beginning of withdrawing, flow rate q  substantially increases in time and 

reaches a maximum at about 25 seconds from the beginning of withdrawing. The higher 
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the vacuum the higher is the q maximum and earlier its achieving. The possible 

explanation of the effect is as follows. The initial, just formed short jet is under action of 

surface tension and extension from sucking capillary. The action of surface tension 

squeezes the jet causing the increase in the flow rate. With increasing jet’s length the 

gravity force comes into play and soon overcomes the surface tension effect, causing the 

decrease in flow rate.  

Figure 6 demonstrates that the flow rate is proportional to the speed of change in 

the length of jet /  ( / )dl dt dL dt= . This is direct confirmation of evident kinematical 

relation (16) on the example of the highest used vacuum.      
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Fig.6. Comparison of time dependences 
of withdrawal rate ( )l t& (curve 1) 
and flow rate (curve 2) with 
vacuum value v 32KPaσ = for 
0.025% PIB solution in lubricant 
oil. 

 
Fig.7. The decreasing branches 
time dependences of flow rate in 
Fig.5, represented in semi-
logarithmic coordinates. 

 

After passing through the maximum, the flow rate exponentially decreases. This 

effect, predicted by relation (21) is illustrated in Fig.7, where the time dependence of 

ln q is presented by a strait line with the slope equal to about 0.02− (1/sec). As seen from 

Fig.7 the decrease in applied (constant) value of vacuum also causes the decrease in flow 
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values of vacuum are negligible. Thus the data presented in Fig.7 illustrate the changes of 

average flow rate with time for three different values of vacuum.  

Another important fact found in this paper is that independently of the vacuum 

values, all jets break at flow rate about 0.03 3 / seccm . The very existence of a lower 

critical value of flow rate is predicted by the fourth formula in (6). This fact will also be 

utilized in the following modeling.   

Using the data presented in Fig.5 we choose on the decreasing branches ( )q t  

several flow rates, 1q = 0.35, 2q = 0.25, 3q =0.20 and 4q = 0.14 3 / seccm , corresponding 

to various time instances kt . Making photographs at these kt we measured the jet profiles 

corresponding to the flow rates kq related to these instances kt . In this region of   flow 

rates, the measured jet profiles were well reproduced. Figure 8 presents these jet profiles 

as decreasing dependences of the jet radius r versus distance z from the liquid surface, 

up to the maximal visible jet length at those time instances kt . In order to describe the jet 

profiles shown in Fig.8, we had to find along with the function ( / ( ))cq q tξ  describing the 

thickness of exuded solvent in formula (13), three fitting parameters, numerical 

parameters ν  related to the meniscus formulae (3)-(5), numerical parameter n describing 

the gel elastic potential (10), and parameter κ describing the stress-flow rate hydraulic 

relation (17).   
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Fig.8. Jet profiles for several values of flow rate (shown in the box) established by 
photographing. 0.025% PIB solution in lubricant oil. Symbols – experimental 
data, solid lines – model calculations. 
 

We first evaluate the parameters of meniscus. Starting with the highest value of 

flow rate 1q = 0.35 3cm /sec, and using the abovementioned awkward procedure of 

meniscus approximation, we found the value 01 0.49r mm≈  corresponding to the 

maximum flow rate 1q . All other values 0kr corresponding to different values of kq  have 

been calculated using the scaling formulae (3) as: 1/3
0 01 1( / )k kr r q q= . As seen from Figure 

8, the calculated data presented in Table 1, match well the experimental values. Then 

utilizing the fact that the lower critical value of flow rate 3
0 0.03 / seccq cm≈ , we 

calculated the lower critical value of 0cr as 1/3
0 01 1( / ) 0.216c cr r q q mm= = . Using this value, 

we employ expression (6) for 0cr and formula (5) for function ( )m ν  to yield the equation: 

2( ) (0.0959 0.429 1) 137mν ν ν ν ν≡ + + ≈ . Solution of this equation is 9.7ν ≈ , and 

respectively, 14.m ≈ Using these data we calculated the values of large meniscus radiuses 

0R rν= , meniscus stress 0σ due to (4), and the values of parameter 0G in (13). These 

variables for above four profiles are presented in Table 1.  
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Elastic potential for the highly swollen elastic gel is unknown. It is characterized 

by the parameter n which is determined by a fitting procedure as follows. Consider the 

formula (19) for the total ultimate length uL of the jet. Using the values of vacuum 

pressure reported in Section 2, we found that the corresponding values of pulling vacuum 

stress vσ  are: 32, 22.7 and 16 KPa, respectively. Consider the maximal value 

v 32KPaσ = . Experimental results show that for this value of vacuum, the visible 

maximal length of withdrawn jet 10 ,ul cm≈ so the ultimate total jet value  22uL cm≈ . 

Thus from the formula (19) for uL we found 1.062n ≈ .  

Being unaware of strain induced exudation kinetics of solvent out of gel, we 

simply parameterize the function ( / ( ))cq q tξ  by a power relation ( / )a
cq qξ = . Fitting the 

jet profiles in Fig.8 with formula (13) we quickly found that 1/ 2a ≈ , i.e. the thickness of 

the solvent film exuded out of gel under gel stretching is described as: 

  0 0 /ch r r q qξ= ⋅ =  .                                                                (22) 

Simplicity of this result could indicate a fundamental physics of strain induced solvent 

exudation out of cross linked swollen gel. Revealing this physics is, however, outside the 

scope of this paper. 

Using the above values of meniscus parameters and parameter n along with 

expression (22) we calculated jet profiles according to formula (13). Fig. 8 shows a good 

agreement between the calculations (solid lines) and experimental data (points).  

We now consider the modeling of kinetics of long jet withdrawal, asymptotically 

described by formulae (16)-(20). Figure 6 discussed above, verifies the kinematical 

equation (16) on the example of higher pulling vacuum stress. Finally, the parameter 

k introduced in the hydraulic relation (17), is evaluated using (18) and value 
10.02secs −=  as 5 32.71 10  /( sec)k cm Pa−≈ × ⋅ . Data of Figure 5 with the use of (20) and 

obtained values for s and uL allow determine the time * 32sect ≈  starting from which flow 

rate decays exponentially with time. 

We now point out that the relaxation timeθ could not be directly determined from 

the above experimental data. Using these data we can only calculate the value: 

                              1/3 2 1/36.95 10 (sec)βθ −≈ × .                                                    (23) 
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Direct measurement of relaxation time θ  in our very dilute polymer solutions is very 

difficult. One possible way is to evaluate its value using the formula, roughly describing 

the longest relaxation time in the Rouse model (e.g. see [3], p.222):  

                                0[ ] /( )R s A BM N k Tθ η η= .                                                    (24)                               

Here 0[ ]η is intrinsic viscosity whose value ~ 4 is known for the lubricant liquids [11], 

sη is the solvent viscosity, M is polymer molecular weight, AN is Avogadro number, 

Bk is the Boltzmann constant and T is absolute temperature. At the room temperature, 

using above values of constants for 0.025% PIB solution in lubricant oil, yields the value 
44.54 10 sec.Rθ
−≈ ×   

Another way of evaluating the relaxation time is hypothesizing that near the sol – 

gel transition, the polymer concentration in the jet highly increases causing cooperative 

relaxation effects. Then we can speculate that the transition happens under the condition 

 cWe const=  with universal value of cWe . Roughly estimating the critical value cε& of 

strain rate in the transition as 2
0/( )c q r Rε π=& , results in the relation: 

                     2 3
0/( ) 1/( )c c c cWe q r Rθ ε θ π πνβ= ⋅ ≈ =& .                                           (25)                              

Using now assumption of universality of cWe , we can utilize the data of papers [7,8], 

where in case of 0.5% PEO water solution, 2.6PEOν = and 0.334PEOβ = , and 

calculate 3.3cWe ≈ . Then the value of β in our case where 9.7ν = , is calculated as: 

1/3( ) 0.215cWeβ πν −= ≈ . Substituting this value of β in (22) yields:  23.38 10cθ
−≈ × sec. 

Remarkably, the value of cθ is almost two orders of magnitude higher than Rθ . In our 

opinion the value cθ and related value of parameter β seems preferable. The values of 

basic constants in equations (21a-c) obtained using fitting procedure, are presented in 

Table 2.  

  

6. Using open siphon method for evaluation of tackiness of lubricating fluids 

As mentioned before the ultimate jet length (or tackiness) strongly depends on the 

viscosity of oil, molecular weight of dissolved polymer and its concentration in solution. 

Fig.9 shows the dependence of jet length l on the concentration of PIB with 
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Mη ≈ 2,000,000 in two paraffinic oils with respective viscosities 0.068 and 0.022 Pa ⋅ sec 

at 40ºC.  

 

 

 

 

 

 

 

 

 

 

Fig.9.  Ultimate jet length l versus the concentration of PIB with Mη ≈ 2,100,000 in 
two paraffin oils with respective viscosities 0.068 and 0.022 Pa ⋅ sec at 40ºC. 
 

One can see that the dependences of tackiness on polymer concentration in different oils 

are linear. These dependences are in fact linear for any molecular weight in different oils. 

It is clear from Fig.9 that decreasing oil viscosity is accompanied by a large decrease in 

tackiness. For example at the concentration 0.025% of PIB the jet length in oil with 

viscosity 0.068 Pa ⋅ sec is equal to 100 mm, whereas in oil with viscosity 0.022 Pa ⋅ sec it 

is equal 20 mm, i.e. 5 times less than in the first case. 

Data presented on Fig.10 demonstrate what the concentration of PIB with 

different molecular weights in oil with viscosity 0.068 Pa ⋅ sec should be used to reach the 

jet length 100 mm. It is seen that by simply increasing the molecular weight it is possible 

to substantially increase the tackiness. Increasing molecular weight causes, however, a 

decrease in both thermal/oxidative stability and shear stability.  
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Fig.10. Concentration %C of PIB in oil with viscosity 0.068 Pa ⋅ sec 
corresponding to the jet length 100l mm= versus viscosity average molecular 
weight Mη of polymer.   
 

Combining the data presented on Figs.9 and 10 it is possible to evaluate the jet 

length or tackiness for PIB solutions with different molecular weights and at different 

polymer concentrations.  

Unlike PIB’s commonly used as tackifiers, the ethylene/propylene copolymers 

usually do not display tackiness. Nevertheless we obtained some unusual data for the 

blend of PIB with Mη ≈ 2,000,000 with very small additive of ethylene/propylene 

copolymer. Fig.11 demonstrates that adding 0.01% of the copolymer to the PIB solution 

increases the jet length by about 30%. It should also be mentioned that addition of 0.01% 

of copolymer to the solution of 0.025% of PIB practically does not change viscosity of 

the solution. As seen from Fig 11, at higher concentration of the copolymer in PIB 

solutions the tackiness decreases.    

This effect might be explained as follows. Solutions which have 0.01% of 

copolymer could be considered as very dilute, with macromolecules well separated. 

During flow induced orientation of long flexible PIB chains, much shorter and more rigid 

molecules of copolymer are involved in process of orientation and support oriented PIB 

macromolecules, causing increase in tackiness. With increase in concentration of 

copolymer, macromolecules form ensembles, which could not be involved in orientation 

process and moreover could restrict orientation of PIB macromolecules and decrease 

tackiness.  
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Fig.11. Tackiness effect versus concentration of ethylene/propylene copolymer 
added to    the 0.025% PIB solution in lubricant oil. 
 

 
7. Conclusions 

 
This paper applies the open siphon method for evaluations of tackiness of several 

lubricant oils.  In these experiments, evacuated sucking tube withdraws vertical free jet of 

liquids from a jar with a free surface. Dilute solutions of polyisobutelene (PIB) of 

different molecular weights and polymer concentrations in lubricating fluids, as well as 

the blends of PIB with ethylene-propylene copolymer were used in these experiments. 

Time dependences for the length and shape of free jet, and flow rate in the process were 

recorded in the experiments for several values of vacuum in sucking tube and for several 

lubricant fluids. The tackiness of lubricant fluids was quantified by the ultimate length of 

free jet just before it breaks up. Several specific phenomena were observed in the 

experiments, such as solvent exudation out of extended jet, maximum on the time 

dependence of flow rate during the process, maximum of tackiness for solutions of blends 

with and with no tackifier, and a two-phase flow in sucking capillary.  

Theoretical model developed in this paper is similar to that in paper [8], where the 

withdrawn jet is treated as a slightly cross-linked elastic gel. The model [8] was modified 
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in the present paper by including two new features. Firstly we take into account the 

exudation of the swollen gel under extension, a common effect for dilute polymer 

solutions, observed in our experiments. Secondly, we made a non-steady extension of an 

earlier stationary theory [8]. Fitting the theory with experimental data allowed us to well 

interpret and described the data. 

 The results of the paper clearly demonstrate that evaluation of tackiness by the 

open siphon technique presents a simple and reliable method useful for lubricant industry 

applications. 
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Table 1:  The values of meniscus variables in the experimental profiles (Fig.8) 

 

q   cm 3 /sec ( cq )  0.03     0.14     0.20      0.25     0.35 

0r   mm    0.216     0.361    0.407     0.438    0.490 

R   mm     2.10     3.50     3.94     4.25     4.75 
2

0 10σ −× Pa     4.97     5.63     5.98     6.25     6.71 

2
0 10G −× Pa     6.22     6.38     6.65     6.87     7.26 
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Table 2:  The values of basic constants in equations (21a-c) obtained using fitting 
procedure  

 
      β      ν  α βν=   ( )m ν     n  k cm 3 /(Pa ⋅ sec)  θ  sec 

   0.215     9.7   2.08    14   1,062     2.71 510−×  23.38 10−×  

 

 

Figure captions 

 

Fig.1. Experimental set up for testing tackiness. 

Fig.2a,b.  Photographs of free tacky jets for 0.025% PIB solution in lubricant oil. 

Fig.3. Schematics of jet withdrawal.  

Fig.4. Photographs of two-phase motion of jet in capillary. 

Fig.5. Time dependences of flow rate for different vacuum values (shown in the box).  

0.025% PIB solution in lubricant oil.  

Fig.6. Comparison of time dependences of withdrawal rate ( )l t& (curve 1) and flow rate 

(curve 2) with vacuum value v 32KPaσ = for 0.025% PIB solution in lubricant oil. 

Fig.7. The decreasing branches time dependences of flow rate in Fig.5, represented in 

semi-logarithmic coordinates. 

Fig.8. Jet profiles for several values of flow rate (shown in the box) established by 

photographing. 0.025% PIB solution in lubricant oil. Symbols – experimental data, 

solid lines – model calculations.  

Fig.9.  Ultimate jet length l versus the concentration of PIB with Mη ≈ 2,100,000 in two 

paraffin oils with respective viscosities 0.068 and 0.022 Pa ⋅ sec at 40ºC. 

Fig.10. Concentration %C of PIB in oil with viscosity 0.068 Pa ⋅ sec corresponding to the 

jet length 100l mm= versus viscosity average molecular weight Mη of polymer.   

Fig.11. Tackiness effect versus concentration of ethylene/propylene copolymer added to    

the 0.025% PIB solution in lubricant oil. 

 

      


